icpc徐州网络赛 I题,树状数组维护二维偏序问题
分析过程如下:
1.由于输入为一个排列,那么可以推算出,符合条件的点对一定是$nlogn$级别的
2.询问等价于查询$[l,r]$内有多少个$(x,y)$满足$l≤x$ 且 $y<=r$
3.我们发现,这就是一个二维偏序问题
4.更直观地,我们可以把每个满足要求的点对看做一个二维平面上的点$(x,y)$
5.那么每次查询就等于查询点$(l,r)$右下角的点的个数,离线+树状数组即可
#include<bits/stdc++.h> #define ll long long #define rep(ii,a,b) for(int ii=a;ii<=b;++ii) #define IO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0) using namespace std;//head const int maxn=1e5+10,maxm=4e6+10; const ll INF=0x3f3f3f3f,mod=1e9+7; int casn,n,m,k; struct bit{ ll node[maxn],n; inline int lb(int x) {return x&(-x);} void init(int _n){n=_n;fill_n(node,n+2,0);} inline void update(int pos,ll val){ if(pos>0)for(int i=pos;i<=n;i+=lb(i)) node[i]+=val; } inline ll ask(int pos){ ll sum=0; if(pos>0)for(int i=pos;i;i-=lb(i)) sum+=node[i]; return sum; } inline ll query(int l,int r){ return ask(r)-ask(l-1); } }tree; int a[maxn]; int pos[maxn]; struct node{ int x,y,id; }pt[maxm],ask[maxn]; int cmp(node a,node b){ if(a.y==b.y) return a.x<b.x; return a.y<b.y; } int cnt; ll ans[maxn]; int main(){IO; cin>>n>>m; rep(i,1,n) cin>>a[i]; rep(i,1,n) pos[a[i]]=i; rep(i,1,n){ for(int j=2*i;j<=n;j+=i){ int posx=pos[i]; int posy=pos[j]; if(posx>posy) swap(posx,posy); pt[++cnt]={posx,posy,0}; } } rep(i,1,m){ int a,b;cin>>a>>b; ask[i]={a,b,i}; } sort(pt+1,pt+1+cnt,cmp); sort(ask+1,ask+1+m,cmp); tree.init(n); int l=1; rep(i,1,m){ while(l<=cnt&&pt[l].y<=ask[i].y){ tree.update(pt[l].x,1); l++; } ans[ask[i].id]=tree.query(ask[i].x,n); } rep(i,1,m) cout<<ans[i]<<'\n'; }