代码随想录——回溯8、组合总和II
1.代码随想录-逆波兰式、滑动窗口最大值2.代码随想录-栈与队列-有效的括号(括号匹配)3.代码随想录——栈与队列8-前K个高频元素4.二叉树的递归遍历和迭代遍历5.代码随想录——二叉树-11.完全二叉树的节点个数6.代码随想录——二叉树-12.平衡二叉树7.代码随想录——二叉树17-路径总和8.代码随想录——二叉树19.最大二叉树9.代码随想录——二叉树21、合并二叉树(附:递归算法复杂度分析)10.代码随想录——二叉树23、验证二叉搜索树11.代码随想录——25二叉搜索树的最小绝对值差(递归遍历如何记录前后两个指针)12.代码随想录——25.二叉搜索树中的众数13.代码随想录——26、二叉(搜索)树的最近公共祖先
14.代码随想录——回溯8、组合总和II
15.代码随想录——回溯9.分割回文串16.代码随想录——回溯19重新安排行程17.代码随想录——回溯 N皇后18.代码随想录——贪心8.跳跃游戏II19.代码随想录——贪心9.K次取反后最大化的数组和 && std::sort函数的第三个参数说明20.代码随想录——贪心13.分发糖果21.代码随想录——贪心算法:根据身高重建队列 & Vector原理22.代码随想录——贪心算法22单调递增的数字23.代码随想录——贪心23监控二叉树24.代码随想录——动态规划5.周总结25.代码随想录——动态规划9不同的二叉搜索树26.代码随想录——动态规划01背包27.代码随想录——动态规划13.分割等和子集28.代码随想录——动态规划14最后一块石头的重量II(01背包)29.动态规划——dp的含义归类(完全背包和01背包区别)30.动态规划——26单词拆分31.代码随想录——动态规划背包问题总结32.代码随想录——动态规划31打家劫舍III(树状DP)33.代码随想录——动态规划、股票问题34.代码随想录——单调栈35.回溯总结
这道题稍微有点难,我是突然想到要不试试把数组排序,画图发现只要出现candidates[i] == candidates[i-1]时(i>start)就可以剪枝,如下图
思路
首先这种去重的问题,用哈希表一般比较麻烦。可以从将数组先排序等变得好处理的角度去思考。
区别
这道题目和39.组合总和如下区别:
- 本题candidates 中的每个数字在每个组合中只能使用一次。
- 本题数组candidates的元素是有重复的,而39.组合总和是无重复元素的数组candidates
最后本题和39.组合总和要求一样,解集不能包含重复的组合。
本题的难点在于区别2中:集合(数组candidates)有重复元素,但还不能有重复的组合。
分析
所谓去重,其实就是使用过的元素不能重复选取。组合问题可以抽象为树形结构,那么“使用过”在这个树形结构上是有两个维度的,一个维度是同一树枝上使用过,一个维度是同一树层上使用过。
我们要去重的是同一树层上的“使用过”,同一树枝上的都是一个组合里的元素,不用去重。
而树层去重的话,需要对数组排序!
代码
标准回溯模板的基础上加上去重判断和排序。
class Solution {
public:
vector<int> path;
vector<vector<int>> result;
void backTracking(vector<int>& candidates,int sum,int start){
if(sum == 0){
result.emplace_back(path);
return;
}else if(sum < 0)return;
//核心:要去掉重复的组合
int last=-1;
for(int i=start;i<candidates.size();i++){
if(candidates[i] == last)continue;
last = candidates[i];
path.emplace_back(candidates[i]);
backTracking(candidates,sum-candidates[i],i+1);
path.pop_back();
}
}
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
sort(candidates.begin(),candidates.end());
backTracking(candidates,target,0);
return result;
}
};
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 25岁的心里话
· 按钮权限的设计及实现