Loading

Java11 HashMap源码分析(一、文档翻译)

描述文档:

/**
 * Hash table based implementation of the {@code Map} interface.  This
 * implementation provides all of the optional map operations, and permits
 * {@code null} values and the {@code null} key.  (The {@code HashMap}
 * class is roughly equivalent to {@code Hashtable}, except that it is
 * unsynchronized and permits nulls.)  This class makes no guarantees as to
 * the order of the map; in particular, it does not guarantee that the order
 * will remain constant over time.
 */

第一段表明HashMap是基于Map接口实现的哈希表,提供了所有可选的Map操作,并且允许空Key和Value。HashMap和Hashtable大体上相同,但是HashMap不是线程安全的并且允许空值。
这个类也不保证Map的顺序,特别是不能保证顺序的持久化,也就是说顺序可能随着时间变化(例如rehash操作)。

/**This implementation provides constant-time performance for the basic
 * operations ({@code get} and {@code put}), assuming the hash function
 * disperses the elements properly among the buckets.  Iteration over
 * collection views requires time proportional to the "capacity" of the
 * {@code HashMap} instance (the number of buckets) plus its size (the number
 * of key-value mappings).  Thus, it's very important not to set the initial
 * capacity too high (or the load factor too low) if iteration performance is
 * important.
 */

第二段,这个实现(HashMap)提供了基础操作put和get的固定时间表现(指每次操作时间相同),假设哈希函数将元素正确的分散到篮子(table中的位置)。
在集合视图上迭代的时间和HashMap的capacity和size有关,因此为了迭代的性能,不要将初始capacity设置的过高。

 /**<p>An instance of {@code HashMap} has two parameters that affect its
 * performance: <i>initial capacity</i> and <i>load factor</i>.  The
 * <i>capacity</i> is the number of buckets in the hash table, and the initial
 * capacity is simply the capacity at the time the hash table is created.  The
 * <i>load factor</i> is a measure of how full the hash table is allowed to
 * get before its capacity is automatically increased.  When the number of
 * entries in the hash table exceeds the product of the load factor and the
 * current capacity, the hash table is <i>rehashed</i> (that is, internal data
 * structures are rebuilt) so that the hash table has approximately twice the
 * number of buckets.
 */

第三段,有两个影响HashMap性能的因素:初始容积(initial capacity, hashtable中位置的数量)和装填因子(load factor,决定HashMap的位置在扩容之前能有多少比例被使用)。
每当元素的数量大于装填因子和容积的积,就会触发扩容和重哈希,新的HashMap的容积大约是原来的两倍。

 /**<p>As a general rule, the default load factor (.75) offers a good
 * tradeoff between time and space costs.  Higher values decrease the
 * space overhead but increase the lookup cost (reflected in most of
 * the operations of the {@code HashMap} class, including
 * {@code get} and {@code put}).  The expected number of entries in
 * the map and its load factor should be taken into account when
 * setting its initial capacity, so as to minimize the number of
 * rehash operations.  If the initial capacity is greater than the
 * maximum number of entries divided by the load factor, no rehash
 * operations will ever occur.
 */

第四段,作为一般的规则,默认的装填因子提供了一个在时间和空间花费上好的折中。装填因子增加,空间浪费减少但是查找操作时间增加,减少则相反。
在设置初始容积时,元素的数量和装填因子需要被考虑。当初始容积比除以装填因子的元素最大数量还大时,就永远不会发生重哈希。

 /**<p>If many mappings are to be stored in a {@code HashMap}
 * instance, creating it with a sufficiently large capacity will allow
 * the mappings to be stored more efficiently than letting it perform
 * automatic rehashing as needed to grow the table.  Note that using
 * many keys with the same {@code hashCode()} is a sure way to slow
 * down performance of any hash table. To ameliorate impact, when keys
 * are {@link Comparable}, this class may use comparison order among
 * keys to help break ties.
 */

第五段,当有许多映射储存在Hashmap中时,创建时指定一个足够大的容积比等待它自动扩容要更有效率。
使用许多有着相同hashcode的key会明显的降低任何hashtable的性能。为了改善这个情况,当key是可比较的(实现了Comparable接口),
可以在key中使用比较顺序来帮助打破ties(可能是困境的意思?)

 /**<p><strong>Note that this implementation is not synchronized.</strong>
 * If multiple threads access a hash map concurrently, and at least one of
 * the threads modifies the map structurally, it <i>must</i> be
 * synchronized externally.  (A structural modification is any operation
 * that adds or deletes one or more mappings; merely changing the value
 * associated with a key that an instance already contains is not a
 * structural modification.)  This is typically accomplished by
 * synchronizing on some object that naturally encapsulates the map.

 * If no such object exists, the map should be "wrapped" using the
 * {@link Collections#synchronizedMap Collections.synchronizedMap}
 * method.  This is best done at creation time, to prevent accidental
 * unsynchronized access to the map:<pre>
 */
Map m = Collections.synchronizedMap(new HashMap(...));</pre>

第六段,注意这个实现(HashMap)是线程不安全的。如果多个线程同时访问一个hashmap,并且至少一个线程结构性的(structurally,删除或增加)修改这个map,
就必须在外部被同步。同步通常是在通过封装map的某个对象上来实现的。(?)
如果没有这样的对象,hashmap应该使用Collections.synchrinizedMap方法包裹起来,最好在创建的时候,来防止意外的非同步访问。并给出了示例。

 /**<p>The iterators returned by all of this class's "collection view methods"
 * are <i>fail-fast</i>: if the map is structurally modified at any time after
 * the iterator is created, in any way except through the iterator's own
 * {@code remove} method, the iterator will throw a
 * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
 * modification, the iterator fails quickly and cleanly, rather than risking
 * arbitrary, non-deterministic behavior at an undetermined time in the
 * future.
 */

第七段,这个类所有的集合视图方法返回的迭代器都是fail-fast的--如果map在迭代器被创建后的任何时间被结构性的修改(除了这个迭代器自己通过remove修改),迭代器就会抛出concurrentModificationException异常。因此,当有并发操作时,迭代器快速崩溃,而不是冒着出错的风险继续工作。

* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 * as it is, generally speaking, impossible to make any hard guarantees in the
 * presence of unsynchronized concurrent modification.  Fail-fast iterators
 * throw {@code ConcurrentModificationException} on a best-effort basis.
 * Therefore, it would be wrong to write a program that depended on this
 * exception for its correctness: <i>the fail-fast behavior of iterators
 * should be used only to detect bugs.</i>

第八段,接着上一段讲,注意迭代器的fail-fast行为不能被保证正常工作,一般来说,在非同步并发修改时做出任何硬性保证是不可能的。
fail-fast迭代器抛出ConcurrentMdificationException异常已经尽了最大的努力,因此不能依赖这个机制的正确性来写程序--迭代器的fast-fail行为应该只在检测bug时被使用。

posted @ 2020-10-27 15:50  ゆに  阅读(154)  评论(0编辑  收藏  举报