poj 3728 The merchant(离线LCA 的应用,5级)
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 2399 | Accepted: 790 |
Description
There are N cities in a country, and there is one and only one simple path between each pair of cities. A merchant has chosen some paths and wants to earn as much money as possible in each path. When he move along a path, he can choose one city to buy some goods and sell them in a city after it. The goods in all cities are the same but the prices are different. Now your task is to calculate the maximum possible profit on each path.
Input
The first line contains N, the number of cities.
Each of the next N lines contains wi the goods' price in each city.
Each of the next N-1 lines contains labels of two cities, describing a road between the two cities.
The next line contains Q, the number of paths.
Each of the next Q lines contains labels of two cities, describing a path. The cities are numbered from 1 to N.
1 ≤ N, wi, Q ≤ 50000
Output
The output contains Q lines, each contains the maximum profit of the corresponding path. If no positive profit can be earned, output 0 instead.
Sample Input
4 1 5 3 2 1 3 3 2 3 4 9 1 2 1 3 1 4 2 3 2 1 2 4 3 1 3 2 3 4
Sample Output
4 2 2 0 0 0 0 2 0
Source
#include<iostream> #include<cstring> #include<cstdio> #define ll(x) (1<<x) #define FOR(i,a,b) for(int i=a;i<=b;++i) #define clr(f,z) memset(f,z,sizeof(f)) using namespace std; const int mm=7e5+9; int head[mm],edge,val[mm],qh[mm],N; int rt[mm],ax[mm],ix[mm],ans[mm],up[mm],dw[mm],lca[mm]; bool vis[mm]; class Edge { public:int u,v,next,w; }e[mm]; void data() { clr(qh,-1);clr(lca,-1); clr(head,-1);edge=0; } void add(int u,int v,int w,int*head) { e[edge].w=w;e[edge].u=u; e[edge].v=v;e[edge].next=head[u];head[u]=edge++; } int find(int x) { int y; if(x!=rt[x]) { y=rt[x]; rt[x]=find(rt[x]);///从根开始到x的正向最优,反向最优 up[x]=max(ax[y]-ix[x],max(up[x],up[y])); dw[x]=max(ax[x]-ix[y],max(dw[x],dw[y])); ax[x]=max(ax[x],ax[y]); ix[x]=min(ix[x],ix[y]); } return rt[x]; } void dfs(int u) { int v; rt[u]=u; vis[u]=1; for(int i=head[u];~i;i=e[i].next) { v=e[i].v; if(!vis[v]) { dfs(v); rt[v]=u; } } for(int i=qh[u];~i;i=e[i].next) { v=e[i].v; if(vis[v]) { int t=find(v);///找到最近公共祖先,更新祖先到达v的正向最优和反向最优 add(t,v,i,lca);///不过祖先到大u的正反向最优没更新,也无法更新故现在没法计算值 } } for(int i=lca[u];~i;i=e[i].next)///只更新以u为最近祖先的查询,因为所有u的子树都遍历完了 { int ki=e[i].w; int uu,vv,dd; uu=e[ki].u;vv=e[ki].v; dd=e[ki].w; find(uu);///vv已经更新过了,但uu没更新 if(dd<0)//反向了 { uu^=vv;vv^=uu;uu^=vv; dd=-dd; } ans[dd]=max(max(up[uu],dw[vv]),ax[vv]-ix[uu]); } } void find_bcc() { clr(vis,0); dfs(1); } int main() { int a,b,Q; while(~scanf("%d",&N)) { data(); FOR(i,1,N)scanf("%d",&ix[i]),ax[i]=ix[i],up[i]=dw[i]=0; FOR(i,2,N) scanf("%d%d",&a,&b),add(a,b,1,head),add(b,a,1,head); scanf("%d",&Q); FOR(i,1,Q) { scanf("%d%d",&a,&b); add(a,b,i,qh); add(b,a,-i,qh); } find_bcc(); FOR(i,1,Q) printf("%d\n",ans[i]); } }