使用Keras开发神经网络

一、使用pip安装好tensorflow

二、使用pip安装好Keras

三、构建过程:

1 导入数据

2 定义模型

3 编译模型

4 训练模型

5 测试模型

6 写出程序

 

1.导入数据

使用皮马人糖尿病数据集(Pima Indians onset of diabetes)(自行百度,google下载数据集)

数据集的内容是皮马人的医疗记录,以及过去5年内是否有糖尿病。所有的数据都是数字,问题是(是否有糖尿病是1或0),是二分类问题。数据的数量级不同,有8个属性:

  1. 怀孕次数
  2. 2小时口服葡萄糖耐量试验中的血浆葡萄糖浓度
  3. 舒张压(毫米汞柱)
  4. 2小时血清胰岛素(mu U/ml)
  5. 体重指数(BMI)
  6. 糖尿病血系功能
  7. 年龄(年)
  8. 类别:过去5年内是否有糖尿病

所有的数据都是数字,可以直接导入Keras。

导入资料

使用随机梯度下降时最好固定随机数种子,这样你的代码每次运行的结果都一致。这种做法在演示结果、比较算法或debug时特别有效。你可以随便选种子:

# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)

现在导入皮马人数据集。NumPy的loadtxt()函数可以直接带入数据,输入变量是8个,输出1个。导入数据后,我们把数据分成输入和输出两组以便交叉检验:

# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]

2 定义模型

Keras的模型由层构成:我们建立一个Sequential模型,一层层加入神经元。第一步是确定输入层的数目正确:在创建模型时用input_dim参数确定。例如,有8个输入变量,就设成8。

隐层怎么设置?这个问题很难回答,需要慢慢试验。一般来说,如果网络够大,即使存在问题也不会有影响。这个例子里我们用3层全连接网络。

全连接层用Dense类定义:第一个参数是本层神经元个数,然后是初始化方式和激活函数。这里的初始化方法是0到0.05的连续型均匀分布(uniform),Keras的默认方法也是这个。也可以用高斯分布进行初始化(normal)。

前两层的激活函数是线性整流函数(relu),最后一层的激活函数是S型函数(sigmoid)。之前大家喜欢用S型和正切函数,但现在线性整流函数效果更好。为了保证输出是0到1的概率数字,最后一层的激活函数是S型函数,这样映射到0.5的阈值函数也容易。前两个隐层分别有12和8个神经元,最后一层是1个神经元(是否有糖尿病)。

# create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu')) 
model.add(Dense(8, init='uniform', activation='relu')) model.add(Dense(1, init='uniform', activation='sigmoid'))

# 现在Keras使用API 2.0版本,所以上述的init需要改为kernel_initializer

3 编译模型

定义好的模型可以编译:Keras会调用TensorFlow编译模型。后端会自动选择表示网络的最佳方法,配合你的硬件。这步需要定义几个新的参数。训练神经网络的意义是:找到最好的一组权重,解决问题。

我们需要定义损失函数和优化算法,以及需要收集的数据。我们使用binary_crossentropy,错误的对数作为损失函数;adam作为优化算法,因为这东西好用。

# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Fit the model

# metrics=['accuracy'] 评价函数,用来度量模型,该训练的评估结果不参与更新权重的运算

4 训练模型

调用模型的fit()方法即可开始训练

网络按轮训练,通过nb_epoch参数控制。每次送入的数据(批尺寸)可以用batch_size参数控制。这里我们只跑150轮,每次10个数据。

# Fit the model
model.fit(X, Y, nb_epoch=150, batch_size=10)
# 现在Keras API 2.0版本已经将nb_epoch改为了epochs

5 测试模型

我们把测试数据拿出来检验一下模型的效果。注意这样不能测试在新数据的预测能力。应该将数据分成训练和测试集。

调用模型的evaluation()方法,传入训练时的数据。输出是平均值,包括平均误差和其他的数据,例如准确度。

# evaluate the model
scores = model.evaluate(X, Y)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

6 写出程序

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# Create first network with Keras
from keras.models import Sequential
from keras.layers import Dense
import numpy
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu')) 
model.add(Dense(8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Fit the model
model.fit(X, Y, epochs=150, batch_size=10)
# evaluate the model
scores = model.evaluate(X, Y)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

# 在开头加上
#import os 
#os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' 
# 是因为我的CPU支持AVX扩展,但是安装的TensorFlow版本无法编译使用。所以使用上面两行代码直接将警告忽略。
# 编译TensorFlow源码 
# 如果没有GPU并且希望尽可能多地利用CPU,那么如果CPU支持AVX,AVX2和FMA,则应该从针对CPU优化的源构建tensorflow。

训练时每轮会输出一次损失和正确率,以及最终的效果

 

总结:

  • 如何导入数据
  • 如何用Keras定义神经网络
  • 如何调用后端编译模型
  • 如何训练模型
  • 如何测试模型
posted @ 2018-09-07 10:32  胡卫雄  阅读(1478)  评论(0编辑  收藏  举报