使用bitset实现毫秒级查询(二)
在上一篇中我们了解了bitset索引的基本用法,本篇开始学习bitset索引更新及一些复杂查询。
1.bitset索引更新
因为我们的数据是在系统启动时全部加载进内存,所以当数据库数据发生变化时要实时通知到内存,可以使用消息队列的方式实现:将新增或者修改的数据写入kafka,然后在索引服务中从kafka中读出数据更新索引.
在UserIndexStore类中增加更新索引方法:
/**
* 更新索引
* @param user
*/
public void updateIndex(User user) {
String name = user.getName();
Integer userIndex = this.nameIndexMap.get(name);
if (userIndex != null) {
clear(userIndex);//清除bitset对应位置的值
update(user, userIndex);
this.userMap.put(userIndex, user);
this.nameIndexMap.put(user.getName(), userIndex);
} else {
//新增时会有并发问题
synchronized (this) {
int index = this.userMap.size() + 1;
createIndex(user, index);
}
}
}
private void update(User user, Integer userIndex) {
getAddress().update(user.getAddress(), userIndex);
getAge().update(user.getAge(), userIndex);
getGender().update(user.getGender(), userIndex);
}
private void clear(Integer index) {
getAddress().clear(index);
getAge().clear(index);
getGender().clear(index);
}
在BitSetIndexModel类中增加clear()方法
/**
* 对第i位置0
* @param i
*/
public void clear(Integer i) {
for (BitSet bs : bsList) {
if (bs != null && i < bs.length()) {
bs.clear(i);
}
}
}
2.bitset进阶查询
'>=','<=',between and
在BitSetIndexModel类中增加如下方法:
public List<String> getHigherList(String str) {
List<String> newlist = new ArrayList<String>();
newlist.add(str);
newlist.addAll(list);
// 排序
Collections.sort(newlist);
// 查找str在list中的位置
int fromIndex = Collections.binarySearch(newlist, str);
if (fromIndex >= 0) {
// 如果map中不包含当前值则 index后移一位
if (map.get(str) == null) {
fromIndex++;
}
return newlist.subList(fromIndex, newlist.size());
} else {
return new ArrayList<String>();
}
}
public List<String> getLowerList(String str) {
List<String> newlist = new ArrayList<String>();
newlist.add(str);
newlist.addAll(list);
// 排序
Collections.sort(newlist);
// 查找str在list中的位置
int endIndex = Collections.binarySearch(newlist, str);
if (endIndex >= 0) {
return newlist.subList(0, endIndex + 1);
} else {
return new ArrayList<String>();
}
}
@SuppressWarnings("unchecked")
public <T extends Comparable<? super T>> List<T> getRange(T min, T max, Comparator<? super T> c) {
List<T> newlist = new ArrayList<T>();
for (String s : list) {
newlist.add((T) (s));
}
Collections.sort(newlist);
// 查找str在list中的位置
int fromIndex = minBinarySearch(newlist, min, c);
int endIndex = maxBinarySearch(newlist, max, c);
if (fromIndex >= 0 && endIndex <= list.size() - 1) {
if (fromIndex == endIndex) {
return newlist.subList(fromIndex, endIndex + 1);
}
return newlist.subList(fromIndex, ++endIndex);
} else {
return new ArrayList<T>();
}
}
/**
*
* @param list
* @param key
* @return
*/
private static <T> int maxBinarySearch(List<T> list, T key, Comparator<? super T> c) {
int low = 0;
int high = list.size() - 1;
int mid = 0;
while (low <= high) {
mid = (low + high) >>> 1;
T midVal = list.get(mid);
int cmp = c.compare(midVal, key);
if (cmp < 0) {
low = mid + 1;
} else if (cmp > 0) {
high = mid - 1;
} else {
return mid; // key found
}
}
if (mid == low) {
return high;
} else {
return mid;
}
}
private static <T> int minBinarySearch(List<T> list, T key, Comparator<? super T> c) {
int low = 0;
int high = list.size() - 1;
int mid = 0;
while (low <= high) {
mid = (low + high) >>> 1;
T midVal = list.get(mid);
int cmp = c.compare(midVal, key);
if (cmp < 0) {
low = mid + 1;
} else if (cmp > 0) {
high = mid - 1;
} else {
return mid; // key found
}
}
if (high == mid) {
return low;
} else {
return mid;
}
}
在UserIndexStore中增加以下方法
/**
* 查询年龄大于等于指定值的user索引
* @param age
* @return
*/
public BitSet findUserByAgeHigher(String age) {
BitSetIndexModel indexModel = getAge();
List<String> strs = indexModel.getHigherList(age);
BitSet bitset = null;
for (String str : strs) {
bitset = indexModel.or(str, bitset);
}
return bitset;
}
/**
* 查询age小于等于指定值的user索引
* @param age
* @return
*/
public BitSet findUserByAgeLower(String age) {
BitSetIndexModel indexModel = getAge();
List<String> strs = indexModel.getLowerList(age);
BitSet bitset = null;
for (String str : strs) {
bitset = indexModel.or(str, bitset);
}
return bitset;
}
/**
* 查询age在某两个值区间内的user索引
* @param min
* @param max
* @return
*/
public BitSet findUserByAgeBetweenAnd(String min, String max) {
BitSetIndexModel indexModel = getAge();
List<String> strs = indexModel.getRange(min, max, new Comparator<Object>() {
@Override
public int compare(Object o1, Object o2) {
return Integer.valueOf(o1 == null ? "0" : o1.toString()).compareTo(Integer.valueOf(o2 == null ? "0" : o2.toString()));
}
});
BitSet bitset = null;
for (String str : strs) {
bitset = indexModel.or(str, bitset);
}
return bitset;
}
测试,查询年龄在16-17之间的北京女孩。
public class BitSetTestRange {
public static void main(String[] args) {
List<User> users = buildData();
UserIndexStore.getInstance().createIndex(users);
ExecutorService executorService = Executors.newFixedThreadPool(50);
int num = 2000;
long begin1 = System.currentTimeMillis();
for (int i = 0; i < num; i++) {
Runnable syncRunnable = new Runnable() {
@Override
public void run() {
BitSet bs = UserIndexStore.getInstance().query("北京", "girl", null);
BitSet ageBs = UserIndexStore.getInstance().findUserByAgeBetweenAnd("16", "17");
bs.and(ageBs);
for (Integer index : BitSetIndexModel.getRealIndexs(bs)) {
UserIndexStore.getInstance().findUser(index);
}
}
};
executorService.execute(syncRunnable);
}
executorService.shutdown();
while (true) {
try {
if (executorService.awaitTermination(1, TimeUnit.SECONDS)) {
System.err.println("单次查询时间为:" + (System.currentTimeMillis() - begin1) / num + "ms");
break;
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
private static List<User> buildData() {
String[] addresss = { "北京", "上海", "深圳" };
String[] ages = { "16", "17", "18" };
List<User> users = new ArrayList<>();
for (int i = 0; i < 1000000; i++) {
User user = new User();
user.setName("name" + i);
int rand = ThreadLocalRandom.current().nextInt(3);
user.setAddress(addresss[ThreadLocalRandom.current().nextInt(3)]);
user.setGender((rand & 1) == 0 ? "girl" : "boy");
user.setAge(ages[ThreadLocalRandom.current().nextInt(3)]);
users.add(user);
}
return users;
}
}
单次查询时间为:22ms
相比"="查询,区间查询速度慢了一些,但还在预期之内。
总结
以上就实现了一个bitset索引,支持索引创建,更新,查询。并且因为没有传统的网络传输和磁盘io,所以速度非常快,基本上响应时间都在10ms以内。如果需要我可以在下一篇使用spring cloud搭建一个较完整的demo,供大家参考使用。