栈
1 概念
-
栈是一种先进后出(FILO,First-In-Last-Out)的线性表,栈和队列非常相像,但是栈只能在栈顶插入(入栈)和删除(出栈)元素。同样,栈可以由链表和数组来实现。
-
对于栈这种数据结构,可以用浏览器来解释;比如我们可以把打开一个网站的过程看作是一次入栈操作,而返回上一次浏览的网站就相当于一次出栈操作。
-
树或栈这种数据结构用于解决 具有完全包含关系的问题;
2 基本操作
2.1 结构定义
- 实现栈需要引入1个变量top, 用来标记当前栈顶元素的位置。
// 栈的结构定义(顺序表)
typedef struct Stack {
int *data;
int size, top; // size: 栈的容量,top: 标记栈顶元素的位置
} Stack;
// 栈的结构定义(链表)
typedef struct Node {
int data;
struct Node *next;
} Node;
typedef struct Stack {
Node *top;
int length;
} Stack;
2.2 入栈(top+1)
- 判断当前栈是否已满,能否继续插入元素;
- 栈顶标记 top 后移一位;
- 将新元素插入到当前栈顶标记的位置;
2.3 出栈(top-1)
- 判断当前栈是否为空,能否继续删除元素;
- 栈顶标记 top 前移一位;
3 代码演示
3.1 数组栈
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define COLOR(a, b) "\033[" #b "m" a "\033[0m"
#define RED(a) COLOR(a, 31)
#define GREEN(a) COLOR(a, 32)
typedef struct Stack {
int *data;
int size, top; // size: 栈的容量,top: 虚拟栈顶指针
} Stack;
Stack *init(int); // 初始化栈空间
int top(Stack *); // 获取栈顶元素
int empty(Stack *); // 判断栈空间是否为空
int push(Stack *, int); // 入栈/压栈
int pop(Stack *); // 出栈/弹栈
void clear(Stack *); // 清空栈空间
void output(Stack *); // 遍历栈空间元素
int expand(Stack *); // 扩容
int main() {
srand(time(0));
#define MAX_OP 20
Stack *s = init(1);
for (int i = 0; i < MAX_OP; i++) {
int op = rand() % 4;
int val = rand() % 100;
switch (op) {
case 0:
case 1:
case 2: {
printf("push %d to the stack = %d\n", val, push(s, val));
} break;
case 3: {
if (!empty(s)) {
printf("pop %d from the stack = ", top(s));
printf("%d\n", pop(s));
}
} break;
}
output(s), printf("\n");
}
#undef MAX_OP
return 0;
}
Stack *init(int n) {
Stack *s = (Stack *)malloc(sizeof(Stack));
s->data = (int *)malloc(sizeof(int) * n);
s->size = n;
s->top = -1; // 表示栈空间中没有元素
return s;
}
int top(Stack *s) {
return s->data[s->top];
}
int empty(Stack *s) {
return s->top == -1;
}
int push(Stack *s, int val) {
if (s == NULL) return 0;
if (s->top == s->size -1) {
if (!expand(s)) {
printf(RED("fail to expand!\n"));
return 0;
}
printf(GREEN("success to expand! the new size = %d\n"), s->size);
}
s->data[++(s->top)] = val;
return 1;
}
int pop(Stack *s) {
if (s == NULL) return 0;
if (empty(s)) return 0;
s->top -= 1;
return 1;
}
void clear(Stack *s) {
if (s == NULL) return ;
free(s->data);
free(s);
return ;
}
void output(Stack *s) {
if (s == NULL) return ;
printf("Stack(%d) : [", s->top + 1);
for (int i = 0; i <= s->top; i++) {
i && printf(", ");
printf("%d", s->data[i]);
}
printf("]\n");
return ;
}
int expand(Stack *s) {
int extr_size = s->size;
int *temp;
while (extr_size) {
temp = (int *)realloc(s->data, sizeof(int) * (s->size + extr_size));
if (temp != NULL) break;
extr_size >>= 1;
}
if (temp == NULL) return 0;
s->data = temp;
s->size += extr_size;
return 1;
}
3.2 链栈
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
typedef struct Node {
int data;
struct Node *next;
} Node;
typedef struct Stack {
Node *top;
int length;
} Stack;
Node *getNewNode(int);
Stack *init_stack();
void clear(Stack *);
int empty(Stack *);
int push(Stack *, int);
int pop(Stack *);
void output(Stack *);
int top(Stack *);
int main() {
srand(time(0));
#define MAX_OP 20
Stack *s = init_stack();
for (int i = 0; i < MAX_OP; i++) {
int op = rand() % 4;
int val = rand() % 100;
switch (op) {
case 0:
case 1:
case 2: {
printf("push %d to the Stack = %d\n", val, push(s, val));
} break;
case 3: {
if (!empty(s)) {
printf("pop %d from the Stack = ", top(s));
printf("%d\n", pop(s));
}
} break;
}
output(s), printf("\n");
}
#undef MAX_OP
clear(s);
return 0;
}
Node *getNewNode(int val) {
Node *p = (Node *)malloc(sizeof(Node));
p->data = val;
p->next = NULL;
return p;
}
Stack *init_stack() {
Stack *s = (Stack *)malloc(sizeof(Stack));
s->top = NULL;
s->length = 0;
return s;
}
void clear(Stack *s) {
if (s == NULL) return;
Node *p = s->top, *q;
while (p != NULL) {
q = p->next;
free(p);
p = q;
}
free(s);
return;
}
int empty(Stack *s) {
return s->top == NULL;
}
int top(Stack *s) {
return s->top->data;
}
int push(Stack *s, int val) {
if (s == NULL) return 0;
Node *p = getNewNode(val);
p->next = s->top;
s->top = p;
s->length += 1;
return 1;
}
int pop(Stack *s) {
if (s == NULL) return 0;
if (empty(s)) return 0;
Node *p = s->top;
s->top = p->next;
free(p);
s->length -= 1;
return 1;
}
void output(Stack *s) {
if (s == NULL) return;
printf("Stack[%d] : ", s->length);
for (Node *p = s->top; p; p = p->next) {
p != s->top && printf(" ");
printf("%d", p->data);
}
printf("\n");
return;
}
4 应用
4.1 数列翻转
- 将数列中的元素依次入栈;
- 将栈顶元素依次出栈,直到栈为空为止;
4.2 表达式中的括号匹配
- 依次遍历表达式中的字符,当该字符为左括号时,就入栈;当该字符为右括号时,就出栈;
- 在整个表达式遍历结束时,且当前栈为空,则括号匹配成功,否则,括号匹配失败;