三十四、StochRsi 策略
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import cross_order as order
import time
def StochRSI(close, lengthRSI=14, lengthStoch=14, smoothK=3, smoothD=3):
"""
计算StochRSI(close),有5个参数,第1个为数据源
@param close: 数据源
@param lengthRSI: RSI参数
@param lengthStoch: Stoch参数
@param smoothK: K参数
@param smoothD: D参数
@return:
"""
# 计算RSI
lc = close.shift(1)
diff = close - lc
up = diff.where(diff > 0, 0)
down = -diff.where(diff < 0, 0)
ema_up = up.ewm(alpha=1 / lengthRSI, adjust=False).mean()
ema_down = down.ewm(alpha=1 / lengthRSI, adjust=False).mean()
rs = ema_up / ema_down
rsi = 100 - 100 / (1 + rs)
# 计算Stochastic
stoch = (rsi - rsi.rolling(window=lengthStoch).min()) / (rsi.rolling(window=lengthStoch).max() -
rsi.rolling(window=lengthStoch).min())
k = stoch.rolling(window=smoothK).mean()
d = k.rolling(window=smoothD).mean()
# 添加到data中
STOCHRSI = k * 100
MASTOCHRSI = d * 100
return STOCHRSI, MASTOCHRSI
def main():
print("任务开始时间:", time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
for symbol in order.symbol_pool:
# 设置杠杆倍数
order.set_leverage(symbol=symbol, leverage='25')
# 15分钟
df = order.get_candlesticks(symbol=symbol, interval='15m', limit=str(181))
fastk, fastd = StochRSI(df['close'], 14, 14, 3, 3)
if (fastk.iloc[-2] or fastd.iloc[-2] < 20) and (
fastk.iloc[-1] or fastd.iloc[-1] >= 20):
order.up_cross_order(symbol=symbol, ordtype='market', message='StochRSI 策略做多')
elif (fastk.iloc[-2] or fastd.iloc[-2] < 80) and (
fastk.iloc[-1] or fastd.iloc[-1] >= 80):
order.down_cross_order(symbol=symbol, ordtype='market', message='StochRSI 策略做空')
time.sleep(2)
print("任务结束时间:", time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
if __name__ == '__main__':
print("程序运行时间:", time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
main()
# -*- coding: utf-8 -*-
import cross_order as order
import time
def StochRSI(close, lengthRSI=14, lengthStoch=14, smoothK=3, smoothD=3):
"""
计算StochRSI(close),有5个参数,第1个为数据源
@param close: 数据源
@param lengthRSI: RSI参数
@param lengthStoch: Stoch参数
@param smoothK: K参数
@param smoothD: D参数
@return:
"""
# 计算RSI
lc = close.shift(1)
diff = close - lc
up = diff.where(diff > 0, 0)
down = -diff.where(diff < 0, 0)
ema_up = up.ewm(alpha=1 / lengthRSI, adjust=False).mean()
ema_down = down.ewm(alpha=1 / lengthRSI, adjust=False).mean()
rs = ema_up / ema_down
rsi = 100 - 100 / (1 + rs)
# 计算Stochastic
stoch = (rsi - rsi.rolling(window=lengthStoch).min()) / (rsi.rolling(window=lengthStoch).max() -
rsi.rolling(window=lengthStoch).min())
k = stoch.rolling(window=smoothK).mean()
d = k.rolling(window=smoothD).mean()
# 添加到data中
STOCHRSI = k * 100
MASTOCHRSI = d * 100
return STOCHRSI, MASTOCHRSI
def main():
print("任务开始时间:", time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
for symbol in order.symbol_pool:
# 设置杠杆倍数
order.set_leverage(symbol=symbol, leverage='25')
# 15分钟
df = order.get_candlesticks(symbol=symbol, interval='15m', limit=str(181))
fastk, fastd = StochRSI(df['close'], 14, 14, 3, 3)
if (fastk.iloc[-2] or fastd.iloc[-2] < 20) and (
fastk.iloc[-1] or fastd.iloc[-1] >= 20):
order.up_cross_order(symbol=symbol, ordtype='market', message='StochRSI 策略做多')
elif (fastk.iloc[-2] or fastd.iloc[-2] < 80) and (
fastk.iloc[-1] or fastd.iloc[-1] >= 80):
order.down_cross_order(symbol=symbol, ordtype='market', message='StochRSI 策略做空')
time.sleep(2)
print("任务结束时间:", time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
if __name__ == '__main__':
print("程序运行时间:", time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
main()
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek “源神”启动!「GitHub 热点速览」
· 微软正式发布.NET 10 Preview 1:开启下一代开发框架新篇章
· 我与微信审核的“相爱相杀”看个人小程序副业
· C# 集成 DeepSeek 模型实现 AI 私有化(本地部署与 API 调用教程)
· spring官宣接入deepseek,真的太香了~