NOI2002_ Galaxy银河英雄传说86

NOI2002_ Galaxy银河英雄传说86

 

 

公元五八○一年,地球居民迁移至金牛座α第二行星,;宇宙历七九九年,银河系的两大军事集团在巴米利恩星;杨威利擅长排兵布阵,巧妙运用各种战术屡次以少胜多;然而,老谋深算的莱因哈特早已在战略上取得了主动;在杨威利发布指令调动舰队的同时,莱因哈特为了及时;作为一个资深的高级程序设计员,你被要求编写程序分;输入文件;第一行有一个整数t(1?t?500,000),表;m

 

公元五八○一年,地球居民迁移至金牛座α第二行星,在那里发表银河联邦创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展。

宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发战争。泰山压顶集团派宇宙舰队司令莱因哈特率领十万余艘战舰出征,气吞山河集团点名将杨威利组织麾下三万艘战舰迎敌。

杨威利擅长排兵布阵,巧妙运用各种战术屡次以少胜多,难免恣生骄气。在这次决战中,他将巴米利恩星域战场划分成30000列,每列依次编号为1,2,…,30,000。之后,他把自己的战舰也依次编号为1, 2, …, 30000,让第i号战舰处于第i列(i=1, 2, …,30,000),形成“一字长蛇阵”,诱敌深入。这是初始阵形。当进犯之敌到达时,杨威利会多次发布合并指令,将大部分战舰集中在某几列上,实施密集攻击。合并指令为mij,含义为让第i号战舰所在的整个战舰队列,作为一个整体(头在前尾在后)接至第j号战舰所在的战舰队列的尾部。显然战舰队列是由处于同一列的一个或多个战舰组成的。合并指令的执行结果会使队列增大。

然而,老谋深算的莱因哈特早已在战略上取得了主动。在交战中,他可以通过庞大的情报网络随时监听杨威利的舰队调动指令。

在杨威利发布指令调动舰队的同时,莱因哈特为了及时了解当前杨威利的战舰分布情况,也会发出一些询问指令:cij。该指令意思是,询问电脑,杨威利的第i号战舰与第j号战舰当前是否在同一列中,如果在同一列中,那么它们之间布置有多少战舰。

作为一个资深的高级程序设计员,你被要求编写程序分析杨威利的指令,以及回答莱因哈特的询问。 最终的决战已经展开,银河的历史又翻过了一页……

 

输入文件

第一行有一个整数t(1?t?500,000),表示总共有T条指令。 以下有T行,每行有一条指令。指令有两种格式:

mij:i和j是两个整数(1?i,j?30,000),表示指令涉及的战舰编号。该指令是莱因哈特窃听到的杨威利发布的舰队调动指令,并且保证第i号战舰与第j号战舰不在同一列。

cij:i和j是两个整数(1?i,j?30,000),表示指令涉及的战舰编号。该指令是莱因哈特发布的询问指令。

 

输出文件

你的程序应当依次对输入的每一条指令进行分析和处理:

如果是杨威利发布的舰队调动指令,则表示舰队排列发生了变化,你的程序要注意到这一点,但是不要输出任何信息;

如果是莱因哈特发布的询问指令,你的程序要输出一行,仅包含一个整数,表示在同一列上,第i号战舰与第j号战舰之间布置的战舰数目。如果第i号战舰与第j号战舰当前不在同一列上,则输出-1。

 

输入输出样例

galaxy.in 4

M 2 3 C 1 2 M 2 4 C 4 2

 

galaxy.out -1 1

 

样例说明

战舰位置图:表格中阿拉伯数字表示战舰编号

同一列的战舰组成一个并查集,集合中的一个结点对应一艘战舰。并以当前列的第一艘战舰作为集合的代表,并查集的数据类型采用树型,树的根结点即为集合的代表。

试题不仅要求判别两个结点是否在同一个集合(即两艘战舰是否在同一列),而且还要求计算结点在有序集合的位置(即每一艘战舰相隔同列的第一艘战舰几个位置,简称相对位置)。

 

const

maxn=30000; var

x,y:integer;

i,cmdcount:longint; ch:char;

father,count,behind:array[1..maxn] of integer; fin,fout:text;

1. 查找根结点,并进行路径压缩

function find_father(x:integer):integer; {查找结点X所在树的根结点,并对该树进行路径压缩} var

i,j,f,next:integer; begin

i:=x; while father[i]<>i do i:=father[i]; f:=i; {找出结点X所在树的根结点?f}

i:=x; {按照自上而下的顺序处理X的祖先结点} while i<>f do begin

next:=father[i];

father[i]:=f; {把结点i的父结点调整为f,完成路径压缩} j:=next; repeat

behind[i]:=behind[i]+behind[j]; {calculate behind迭代,迭代求出路径上每一个子结点相对于f的相对位置} j:=father[j]; until father[j]=j; i:=next; end;

find_father:=f; {函数返回结点X所在树的根结点} end;

2. 计算合并指令

procedure moveship(x,y:integer); {把X所在的集合并入Y所在的集合} var

fx,fy:integer; begin

fx:=find_father(x);

fy:=find_father(y); {分别计算X,Y所在的子树父结点的序号}

father[father[fx]]:=fy; {若X,Y不在同一棵树内,合并子树。X所在子树的根结点调整为Y的子树的根结点}

behind[fx]:=behind[fx]+count[fy]; {{根据调整后的X和Y关系,计算X的相对根结点位置要增加count[fy]} count[fy]:=count[fy]+count[fx]; {X并入Y所在的子树,计算新集合的结点数} end;

试题不仅要求判别两个结点是否在同一个集合(即两艘战舰是否在同一列),而且还要求计算结点在有序集合的位置(即每一艘战舰相隔同列的第一艘战舰几个位置,简称相对位置)。 procedure checkship(x,y:integer); var

f1,f2:integer; begin

f1:=find_father(x);

f2:=find_father(y); {分别计算X,Y所在的子树父结点的序号}

if f1<>f2 then writeln(fout,-1) {若X,Y不在一棵树中,则返回-1}

else writeln(fout,abs(behind[x]-behind[y])-1); {否则返回X和Y间隔的战舰数} end;

begin

assign(fin,'galaxy1.in');reset(fin);

assign(fout,'galaxy1.out');rewrite(fout);

for i:=1 to maxn do{初始时为每一艘战舰建立一个并查集} begin

father[i]:=i; count[i]:=1; behind[i]:=0; end;

readln(fin,cmdcount); {读指令数}

for i:=1 to cmdcount do{顺序处理每一条指令} begin

read(fin,ch); {读第i条指令的类型} case ch of

'M' : begin readln(fin,x,y); moveship(x,y); end; {处理合并指令} 'C' : begin readln(fin,x,y); checkship(x,y); end; {处理询问指令} end; end;

close(fin);close(fout); end.

var

father,count,behind:array[1..maxn] of integer; x,y:integer; i,CmdCount:longint; ch:char;

function Find_Father(x:integer):integer; var

i,j,f,next:integer; begin i:=x;

while Father[i]<>i do i:=Father[i]; f:=i; i:=x;

while i<>f do begin

next:=Father[i]; Father[i]:=f;

{calculate Behind} j:=next; repeat

Behind[i]:=Behind[i]+Behind[j]; j:=Father[j]; until Father[j]=j; i:=next; end;

find_Father:=f; end;

procedure MoveShip(x,y:integer); var

fx,fy:integer; begin

fx:=find_Father(x); fy:=find_Father(y); Father[Father[fx]]:=fy;

Behind[fx]:=Behind[fx]+Count[fy]; Count[fy]:=Count[fy]+Count[fx]; end;

procedure CheckShip(x,y:integer); var f1,f2:integer; begin

f1:=Find_Father(x); f2:=Find_Father(y);

if f1<>f2 then writeln(-1) else writeln(abs(Behind[x]-Behind[y])-1); end;

begin

assign(input,'galaxy.in');reset(input); assign(output,'galaxy.ans');rewrite(output); for i:=1 to maxn do

begin father[i]:=i;count[i]:=1;behind[i]:=0; end; readln(CmdCount);

for i:=1 to CmdCount do begin

read(ch); case ch of

'M' : begin readln(x,y); MoveShip(x,y); end; 'C' : begin readln(x,y); CheckShip(x,y); end; end; end;

close(input);close(output); end.

posted @ 2017-05-29 17:48  Mose  阅读(216)  评论(0编辑  收藏  举报