机器学习之决策树

import math
import pickle

from matplotlib import pyplot as plt


def calc_shang(dataset: list):
    """
    计算给定数据集的香农熵
    :param dataset:
    :return:
    """
    length = len(dataset)
    label_count_map = {}
    for item in dataset:
        current_label = item[-1]
        if current_label not in label_count_map:
            label_count_map[current_label] = 0
        label_count_map[current_label] += 1
    shang = 0.0
    for label, count in label_count_map.items():
        prob = count / length
        shang += prob * (-1 * math.log(prob, 2))
    return shang


def create_dataset():
    dataset = [
        [1, 1, "yes"],
        [1, 1, "yes"],
        [1, 0, "no"],
        [0, 1, "no"],
        [0, 1, "no"]
    ]
    labels = ["no surfacing", "flippers"]
    return dataset, labels


def split_dataset(dataset, axis, value):
    new_dataset = []
    for item in dataset:
        if item[axis] == value:
            reduced_item = item[:axis]
            reduced_item.extend(item[axis + 1:])
            new_dataset.append(reduced_item)
    return new_dataset


def choose_best_feature(dataset):
    num = len(dataset[0]) - 1
    shang = calc_shang(dataset)
    best_info_gain = 0
    best_feature = -1
    for i in range(num):
        feat_list = [_[i] for _ in dataset]
        unique_list = set(feat_list)
        _shang = 0
        for feat in unique_list:
            sub_dataset = split_dataset(dataset, i, feat)
            prob = len(sub_dataset) / len(dataset)
            _shang += prob * calc_shang(sub_dataset)
        info_gain = shang - _shang
        if info_gain > best_info_gain:
            best_info_gain = info_gain
            best_feature = i
    return best_feature


def classify(class_list):
    class_count_map = {}
    for item in class_list:
        if item not in class_count_map:
            class_count_map[item] = 0
        class_count_map[item] += 1
    sorted_class_count_map = sorted(class_count_map.items(), key=lambda x: x[1], reverse=True)
    return sorted_class_count_map[0][0]


def create_tree(dataset, labels):
    class_list = [_[-1] for _ in dataset]
    if class_list.count(class_list[0]) == len(class_list):
        return class_list[0]
    best_feature = choose_best_feature(dataset)
    best_class_label = labels[best_feature]
    tree = {best_class_label: {}}
    del labels[best_feature]
    feat_values = [_[best_feature] for _ in dataset]
    unique_values = set(feat_values)
    for value in unique_values:
        sub_labels = labels[:]
        tree[best_class_label][value] = create_tree(split_dataset(dataset, best_feature, value), sub_labels)
    return tree


def plot_tree(tree, root_name):
    def _plot_tree(ax, tree, parent_name, parent_x, parent_y, dx, dy):
        if parent_name and parent_x == 0 and parent_y == 0:
            ax.text(0, 0, parent_name, ha='center', va='center', bbox=dict(facecolor='white', edgecolor='black'))
        if isinstance(tree, dict):
            # 遍历字典中的每个键值对
            for edge_label, child in tree.items():
                # 计算子节点的位置
                child_x = parent_x - dx / 2 if edge_label == 0 else parent_x + dx / 2
                child_y = parent_y - dy

                if isinstance(child, dict):
                    child_name = list(child.keys())[0]
                else:
                    child_name = child

                # 绘制边和边的描述
                ax.plot([parent_x, child_x], [parent_y, child_y], 'k-')
                mid_x = (parent_x + child_x) / 2
                mid_y = (parent_y + child_y) / 2
                ax.text(mid_x, mid_y, str(edge_label), ha='center', va='center', fontsize=8,
                        bbox=dict(facecolor='yellow', edgecolor='black'))

                # 绘制子节点
                ax.text(child_x, child_y, child_name, ha='center', va='center',
                        bbox=dict(facecolor='white', edgecolor='black'))

                # 递归绘制子树
                if isinstance(child, dict):
                    _plot_tree(ax, child[child_name], child_name, child_x, child_y, dx / 2, dy)

    fig, ax = plt.subplots(figsize=(10, 8))
    ax.set_xlim(-1, 1)
    ax.set_ylim(-1.5, 0.5)
    ax.axis('off')

    _plot_tree(ax, tree[root_name], root_name, 0, 0, 1, 0.5)

    plt.show()


def classify_tree(tree: dict, labels: list, test_vec):
    first_str = list(tree.keys())[0]
    second_dict = tree[first_str]
    feat_index = labels.index(first_str)
    class_label = ""
    for key, value in second_dict.items():
        if test_vec[feat_index] == key:
            if isinstance(value, dict):
                class_label = classify_tree(value, labels, test_vec)
            else:
                class_label = value
    return class_label


def store_tree(tree: dict, file_path: str):
    with open(file_path, "wb") as f:
        pickle.dump(tree, f)


def grab_tree(file_path):
    with open(file_path, "rb") as f:
        return pickle.load(f)


if __name__ == '__main__':
    mat, labels = create_dataset()
    tree = create_tree(dataset=mat, labels=labels)
    plot_tree(tree, 'no surfacing')

其他决策树示例或者基于主流机器学习框架实现的决策树代码地址:

https://gitee.com/navysummer/machine-learning/tree/master/decision_tree

  

posted @ 2024-06-09 15:52  NAVYSUMMER  阅读(5)  评论(0编辑  收藏  举报
交流群 编程书籍