Uva--662(动规,经典递推)

2014-08-10 23:30:04

  Fast Food 

The fastfood chain McBurger owns several restaurants along a highway. Recently, they have decided to build several depots along the highway, each one located at a restaurent and supplying several of the restaurants with the needed ingredients. Naturally, these depots should be placed so that the average distance between a restaurant and its assigned depot is minimized. You are to write a program that computes the optimal positions and assignments of the depots.


To make this more precise, the management of McBurger has issued the following specification: You will be given the positions of nrestaurants along the highway as n integers $d_1 < d_2 < \dots < d_n$ (these are the distances measured from the company's headquarter, which happens to be at the same highway). Furthermore, a number $k (k \leŸ n)$ will be given, the number of depots to be built.

The k depots will be built at the locations of k different restaurants. Each restaurant will be assigned to the closest depot, from which it will then receive its supplies. To minimize shipping costs, the total distance sum, defined as

 

 

\begin{displaymath}\sum_{i=1}^n \mid d_i - (\mbox{position of depot serving restaurant }i) \mid
\end{displaymath}

 

 

must be as small as possible.

Write a program that computes the positions of the k depots, such that the total distance sum is minimized.

Input

The input file contains several descriptions of fastfood chains. Each description starts with a line containing the two integers n and kn and kwill satisfy $1 \leŸ n
\leŸ 200$$1 \leŸ k Ÿ\le 30$$k \le n$. Following this will n lines containing one integer each, giving the positions di of the restaurants, ordered increasingly.

The input file will end with a case starting with n = k = 0. This case should not be processed.

Output 

For each chain, first output the number of the chain. Then output an optimal placement of the depots as follows: for each depot output a line containing its position and the range of restaurants it serves. If there is more than one optimal solution, output any of them. After the depot descriptions output a line containing the total distance sum, as defined in the problem text.


Output a blank line after each test case.

Sample Input 

6 3
5
6
12
19
20
27
0 0

Sample Output 

Chain 1
Depot 1 at restaurant 2 serves restaurants 1 to 3
Depot 2 at restaurant 4 serves restaurants 4 to 5
Depot 3 at restaurant 6 serves restaurant 6
Total distance sum = 8

思路:这道题和之前的递推题是有异曲同工之妙的(类似的题目貌似在某个比赛里见过)。我一开始的思路是dp[i][j][k]记录从第i个到第j个饭店布置k个仓库的最小距离和,后来发现状态太多不好转移。
于是把表示区间的两个量压缩成一个,用dp[i][j]表示在前j个饭店布置i个仓库的最小距离和(这种前i个放j个东西的递推非常常见)。为什么要这样想呢?在分析一下:首先动态规划的核心思想就是通过
求出子问题在一定条件的下的最优解,来推出整个问题的最优解,特点是:子问题具有重复性(或者说子问题中包含着更子的问题,因为如果子问题相互独立就可用分治来处理),其次是子问题和整个问题可
建立递推关系,就像这题中的:在1 - j号饭店中放i - 1个仓库,与在(j+1) - n号饭店中放1个仓库,这两个子问题想加的最优解是可以构成整个问题的最优解的。
  于是有:dp[i][j] = min(dp[i][j],dp[i - 1][p] + dis[p + 1][j]) (i - 1 <= p < j)
  (这里的dis[x][y]表示在x - y号饭店中布置一个仓库的最小距离和,显然应该放在中间,若为饭店数为偶数,随便偏左偏右,易证)

 1 #include <cstdio>
 2 #include <iostream>
 3 #include <cstring>
 4 #include <cmath>
 5 using namespace std;
 6 const int INF = 1e9;
 7 
 8 int n,k;
 9 int d[205];
10 int dp[35][205];
11 int dis[205][205];
12 int path[35][205];
13 int cnt;
14 
15 int Cal(int x,int y){
16     int sum = 0;
17     int mid = (x + y) / 2;
18     for(int i = x; i <= y; ++i)
19         sum += abs(d[i] - d[mid]);
20     return sum;
21 }
22 
23 void Print(int x,int y){
24     if(x == 0)
25         return;
26     Print(x - 1,path[x][y]);
27     printf("Depot %d at restaurant %d serves restaurants %d to %d\n",++cnt,(path[x][y] + 1 + y) / 2,path[x][y] + 1,y);
28 }
29 
30 int main(){
31     int Case = 0;
32     while(scanf("%d%d",&n,&k) == 2 && (n || k)){
33         for(int i = 1; i <= n; ++i)
34             scanf("%d",&d[i]);
35         for(int i = 1; i <= n; ++i){
36             for(int j = i; j <= n; ++j){
37                 dis[i][j] = Cal(i,j);
38             }
39         }
40         //dp[i][j] = min(dp[i][j],dp[i - 1][p] + dis[p + 1][j]) , (i - 1 <= p < j)
41         memset(dp,0,sizeof(dp));
42         memset(path,0,sizeof(path));
43         for(int j = 1; j <= n; ++j){
44             dp[1][j] = dis[1][j];
45         }
46         for(int i = 2; i <= k; ++i){
47             for(int j = 1; j <= n; ++j){
48                 dp[i][j] = INF;
49                 for(int p = i - 1; p < j; ++p){
50                     if(dp[i - 1][p] + dis[p + 1][j] < dp[i][j]){
51                         dp[i][j] = dp[i - 1][p] + dis[p + 1][j];
52                         path[i][j] = p;
53                     }
54                 }
55             }
56         }
57         printf("Chain %d\n",++Case);
58         cnt = 0;
59         Print(k,n);
60         printf("Total distance sum = %d\n\n",dp[k][n]);
61     }
62     return 0;
63 }

 




posted @ 2014-08-10 23:39  Naturain  阅读(135)  评论(0编辑  收藏  举报