题解 石子游戏
所以全世界就我没看出来答案是 log 级别的
所以全世界就我两个小时才搞出来一个傻逼二分
答案是 log 级别的很好证
发现要找一个最小的集合使其异或和为某个定值
那么考虑将所有数扔到线性基里,用 log 个数一定能异或出这个数
然后就随便做了
然后二分怎么做呢?
发现有可二分性。发现 fwt 可以快速幂。没了
复杂度 \(O(n\log^2 n)\)
为什么测评不开文件啊
点击查看代码
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 525000
#define ll long long
//#define int long long
char buf[1<<21], *p1=buf, *p2=buf;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
inline int read() {
int ans=0, f=1; char c=getchar();
while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();}
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans*f;
}
int n;
int a[N], lim, sum;
const ll mod=1e9+7, inv2=(mod+1)>>1;
inline ll qpow(ll a, ll b) {ll ans=1; for (; b; a=a*a%mod,b>>=1) if (b&1) ans=ans*a%mod; return ans;}
void fwt(ll* a, int len, int op) {
ll t1, t2;
for (int i=1; i<len; i<<=1)
for (int j=0,step=i<<1; j<len; j+=step)
for (int k=j; k<j+i; ++k) {
t1=a[k], t2=a[k+i];
if (op==1) a[k]=(t1+t2)%mod, a[k+i]=(t1-t2)%mod;
else a[k]=(t1+t2)*inv2%mod, a[k+i]=(t1-t2)*inv2%mod;
}
}
namespace force{
int ans=INF;
void solve() {
int lim=1<<n;
for (int s=0; s<lim; ++s) {
int tem=0;
for (int i=1; i<=n; ++i) if (s&(1<<i-1)) tem^=a[i];
if (tem==sum) ans=min(ans, __builtin_popcount(s));
}
cout<<n-ans<<endl;
}
}
namespace is_fwt_be_like_this{
ll f[N], g[N], ans[N];
void fwt(ll* a, int len, int op) {
ll t1, t2;
for (int i=1; i<len; i<<=1)
for (int j=0,step=i<<1; j<len; j+=step)
for (int k=j; k<j+i; ++k) {
t1=a[k], t2=a[k+i];
if (op==1) a[k]=(t1+t2)%mod, a[k+i]=(t1-t2)%mod;
else a[k]=(t1+t2)*inv2%mod, a[k+i]=(t1-t2)*inv2%mod;
}
}
void solve() {
n=1<<read();
for (int i=0; i<n; ++i) f[i]=read();
for (int i=0; i<n; ++i) g[i]=read();
// for (int i=0; i<n; ++i)
// for (int j=0; j<n; ++j)
// ans[i^j]=(ans[i^j]+f[i]*g[j])%mod;
fwt(f, n, 1); fwt(g, n, 1);
for (int i=0; i<n; ++i) f[i]=f[i]*g[i]%mod;
fwt(f, n, -1);
for (int i=0; i<n; ++i) ans[i]=f[i];
for (int i=0; i<n; ++i) printf("%lld ", (ans[i]%mod+mod)%mod); printf("\n");
}
}
namespace task1{
ll f[N], g[N];
int bln, bct, ans;
void solve() {
for (bln=1; bln<=lim; bln<<=1,++bct);
for (int i=1; i<=n; ++i) ++g[a[i]];
fwt(g, bln, 1); f[0]=1;
for (ans=0; !f[sum]; ++ans) {
fwt(f, bln, 1);
for (int i=0; i<bln; ++i) f[i]=f[i]*g[i]%mod;
fwt(f, bln, -1);
}
printf("%d\n", n-ans);
}
}
namespace task2{
int bln, bct, ans;
ll f[N], g[N], bkp[N];
bool check(int mid) {
for (int i=0; i<bln; ++i) f[i]=bkp[i]*qpow(g[i], mid)%mod;
fwt(f, bln, -1);
return f[sum];
}
void solve() {
for (bln=1; bln<=lim; bln<<=1,++bct);
for (int i=1; i<=n; ++i) ++g[a[i]];
++g[0]; fwt(g, bln, 1);
++bkp[0]; fwt(bkp, bln, 1);
int l=0, r=n, mid;
while (l<=r) {
mid=(l+r)>>1;
if (check(mid)) r=mid-1;
else l=mid+1;
}
ans=r+1;
printf("%d\n", n-ans);
}
}
signed main()
{
// freopen("nim.in", "r", stdin);
// freopen("nim.out", "w", stdout);
n=read();
for (int i=1; i<=n; ++i) {
sum^=(a[i]=read());
lim=max(lim, a[i]);
}
// cout<<"sum: "<<sum<<endl;
// force::solve();
task2::solve();
return 0;
}