题解 虚数之树
根据部分分发现树高是 \(\log\) 是可以做的
发现求的是距离,可以用点分治把树高弄成 \(\log\)
对每个节点开一个子树大小的线段树,存子树内在集合中的点到它的距离
修改和查询跳祖先即可
复杂度 \(O(n\log^2 n)\)
点击查看代码
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 100010
#define fir first
#define sec second
#define pb push_back
#define ll long long
//#define int long long
char buf[1<<21], *p1=buf, *p2=buf;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
inline int read() {
int ans=0, f=1; char c=getchar();
while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();}
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans*f;
}
int n, q, test_id, typ;
int head[N], ecnt;
struct edge{int to, next;}e[N<<1];
inline void add(int s, int t) {e[++ecnt]={t, head[s]}; head[s]=ecnt;}
namespace force{
bool vis[N];
int dep[N], fa[21][N], lg[N];
void dfs(int u, int pa) {
for (int i=1; i<21; ++i)
if (dep[u]>=1<<i) fa[i][u]=fa[i-1][fa[i-1][u]];
else break;
for (int i=head[u],v; ~i; i=e[i].next) {
v = e[i].to;
if (v==pa) continue;
fa[0][v]=u;
dep[v]=dep[u]+1;
dfs(v, u);
}
}
int lca(int a, int b) {
if (dep[a]<dep[b]) swap(a, b);
while (dep[a]>dep[b]) a=fa[lg[dep[a]-dep[b]]-1][a];
if (a==b) return a;
for (int i=lg[dep[a]]-1; ~i; --i)
if (fa[i][a]!=fa[i][b])
a=fa[i][a], b=fa[i][b];
return fa[0][a];
}
int dis(int a, int b) {return dep[a]+dep[b]-2*dep[lca(a, b)];}
void solve() {
dep[1]=1; dfs(1, 0);
for (int i=1; i<=n; ++i) lg[i]=lg[i-1]+(1<<lg[i-1]==i);
int lst=0, ans=0;
for (int i=1,op,l,r,x; i<=q; ++i) {
op=read();
if (op==1) vis[read()^(lst*typ)]=1;
else if (op==2) vis[read()^(lst*typ)]=0;
else {
l=read(); r=read(); x=read()^(lst*typ); ans=INF;
for (int j=l; j<=r; ++j) if (vis[j]) ans=min(ans, dis(j, x));
printf("%d\n", ans==INF?-1:ans);
if (ans!=INF) lst=ans;
}
}
}
}
namespace task1{
bool del[N];
int siz[N], msiz[N], rot;
vector<pair<int, int>> anc[N];
int lson[N*300], rson[N*300], val[N*300], tot;
#define ls(p) lson[p]
#define rs(p) rson[p]
#define pushup(p) val[p]=min(val[ls(p)], val[rs(p)]);
struct segment{
int rot;
void upd(int& p, int tl, int tr, int pos, int dat) {
if (!p) val[p=++tot]=INF;
if (tl==tr) {val[p]=dat; return ;}
int mid=(tl+tr)>>1;
if (pos<=mid) upd(ls(p), tl, mid, pos, dat);
else upd(rs(p), mid+1, tr, pos, dat);
pushup(p);
}
int query(int p, int tl, int tr, int ql, int qr) {
if (!p) return INF;
if (ql<=tl&&qr>=tr) return val[p];
int mid=(tl+tr)>>1, ans=INF;
if (ql<=mid) ans=min(ans, query(ls(p), tl, mid, ql, qr));
if (qr>mid) ans=min(ans, query(rs(p), mid+1, tr, ql, qr));
return ans;
}
void ins(int pos, int dat) {upd(rot, 1, n, pos, dat);}
int query(int l, int r) {return query(rot, 1, n, l, r);}
}seg[N];
void getrt(int u, int fa, int tot) {
siz[u]=1; msiz[u]=0;
for (int i=head[u],v; ~i; i=e[i].next) {
v = e[i].to;
if (v==fa || del[v]) continue;
getrt(v, u, tot);
siz[u]+=siz[v];
msiz[u]=max(msiz[u], siz[v]);
}
msiz[u]=max(msiz[u], tot-siz[u]);
if (msiz[u]<msiz[rot]) rot=u;
}
void getdis(int u, int fa, int rot, int dis) {
anc[u].pb({rot, dis});
for (int i=head[u],v; ~i; i=e[i].next) {
v = e[i].to;
if (v==fa || del[v]) continue;
getdis(v, u, rot, dis+1);
}
}
void solve(int u) {
del[u]=1;
getdis(u, 0, u, 0);
for (int i=head[u],v; ~i; i=e[i].next) {
v = e[i].to;
if (del[v]) continue;
rot=0;
getrt(v, u, siz[v]);
solve(rot);
}
}
void solve() {
// cout<<double(sizeof(lson)*3+sizeof(seg))/1000/1000<<endl; exit(0);
val[0]=INF;
msiz[rot=0]=n+1;
getrt(1, 0, n);
solve(rot);
int lst=0, ans=0;
for (int i=1,op,l,r,x; i<=q; ++i) {
op=read();
if (op==1) {
x=read()^(lst*typ);
for (auto& it:anc[x]) seg[it.fir].ins(x, it.sec);
}
else if (op==2) {
x=read()^(lst*typ);
for (auto& it:anc[x]) seg[it.fir].ins(x, INF);
}
else {
l=read(); r=read(); x=read()^(lst*typ); ans=INF;
for (auto& it:anc[x]) ans=min(ans, it.sec+seg[it.fir].query(l, r));
printf("%d\n", ans==INF?-1:ans);
if (ans!=INF) lst=ans;
}
}
}
}
signed main()
{
freopen("regression.in", "r", stdin);
freopen("regression.out", "w", stdout);
n=read(); q=read(); test_id=read(); typ=read();
memset(head, -1, sizeof(head));
for (int i=1,u,v; i<n; ++i) {
u=read(); v=read();
add(u, v); add(v, u);
}
// force::solve();
task1::solve();
return 0;
}