题解 交通
发现每个点有且仅有两条入边和两条出边
发现每队入边和出边不能同时被删除
于是以原边为点建新图,在不能同时删除的点间连边
于是每个点度数为2,且形成许多偶环
每个偶环有2种选法,于是为 \(2^{环数}\)
Code:
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 200010
#define ll long long
#define fir first
#define sec second
#define make make_pair
#define pb push_back
//#define int long long
char buf[1<<21], *p1=buf, *p2=buf;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
inline int read() {
int ans=0, f=1; char c=getchar();
while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();}
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans*f;
}
int n;
const ll mod=998244353;
namespace force{
int in[N], out[N], ans;
pair<int, int> e[N];
void solve() {
for (int i=1,u,v; i<=n*2; ++i) {
u=read()-1; v=read()-1;
e[i-1]=make(u, v);
}
int lim=(1<<(n*2));
for (int s=1,s2,cnt; s<lim; ++s) {
s2=s; cnt=0;
do {++cnt; s2&=s2-1;} while (s2);
if (cnt!=n) goto jump;
for (int i=0; i<n; ++i) in[i]=out[i]=0;
for (int i=0; i<n*2; ++i) if (s&(1<<i)) {
++out[e[i].fir]; ++in[e[i].sec];
}
for (int i=0; i<n; ++i) if (in[i]!=1 || out[i]!=1) goto jump;
++ans;
jump: ;
}
printf("%d\n", ans);
}
}
namespace task1{
int fa[N];
ll ans=1ll;
bool vis[N];
vector<int> in[N], out[N];
inline int find(int p) {return fa[p]==p?p:fa[p]=find(fa[p]);}
void solve() {
for (int i=1; i<=n*2; ++i) fa[i]=i;
for (int i=1,u,v; i<=n*2; ++i) {
u=read(); v=read();
out[u].pb(i); in[v].pb(i);
}
for (int i=1; i<=n; ++i) {
fa[find(in[i][0])]=find(in[i][1]);
fa[find(out[i][0])]=find(out[i][1]);
}
for (int i=1; i<=n*2; ++i) if (!vis[find(i)]) {
ans=ans*2%mod;
vis[find(i)]=1;
}
printf("%lld\n", ans);
exit(0);
}
}
signed main()
{
freopen("a.in", "r", stdin);
freopen("a.out", "w", stdout);
n=read();
// force::solve();
task1::solve();
return 0;
}