题解 d
写出来\(n^2\)就有81pts……
\(n^2\)的话枚举最后成为限制的是哪两个矩形,利用前缀和和二分\(n^3\)化\(n^2\)就行了
这题最无脑直接贪心的方法会有后效性
但实际上正解好像就是处理这类问题的一大套路
在两个维度上贪心会有后效性,那选一维枚举,另一维贪心就好了
想了很久也没有想出如何维护\(b_{min}\),题解里说用堆,但用堆我只会\(O(nmlogn)\)复杂度的做法丢人,我暴力都\(O(n^2)\)
思路一直卡在在枚举删\(a_{min}\)的个数时,涉及到在按\(b\)排序的堆中删除\(a\)最小的元素
后来发现不用那么复杂,可以倒序枚举个数,每次加进\(a\)最大的元素
而且堆也没必要每次都清空
发现倒序枚举的实际意义相当于少删一个\(a_{min}\),多删一个\(b_{min}\)
所以维护的时候直接删掉堆里\(b\)最小的,放进去堆外面\(a\)最大的即可
Code:
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 100010
#define ll long long
#define ld long double
#define usd unsigned
#define ull unsigned long long
//#define int long long
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
char buf[1<<21], *p1=buf, *p2=buf;
inline int read() {
int ans=0, f=1; char c=getchar();
while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();}
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans*f;
}
int n, m;
ll a[N], b[N];
namespace force{
void solve() {
ll ans=0, amin=INF, bmin=INF;
int lim=1<<n;
for (int s=0,s2,cnt; s<lim; ++s) {
s2=s; cnt=0; amin=INF, bmin=INF;
while (s2) {++cnt; s2&=s2-1;}
if (cnt>m) continue;
for (int i=0; i<n; ++i) {
if (!(s&(1<<i))) {
amin=min(amin, a[i+1]);
bmin=min(bmin, b[i+1]);
}
}
ans=max(ans, amin*bmin);
}
printf("%lld\n", ans);
}
}
namespace task1{
void solve() {
sort(b+1, b+n+1);
printf("%lld\n", a[1]*b[m+1]);
}
}
namespace task2{
void solve() {
ll amin=INF, bmin=INF;
for (int i=1; i<=n; ++i) amin=min(amin, a[i]), bmin=min(bmin, b[i]);
printf("%lld\n", amin*bmin);
}
}
namespace task3{
void solve() {
ll ans=0;
for (int i=1; i<=n; ++i) ans=max(ans, a[i]*b[i]);
printf("%lld\n", ans);
}
}
namespace task4{
struct rat{ll a, b; inline void build(ll a_, ll b_) {a=a_; b=b_;}}p[N];
inline bool operator < (rat a, rat b) {return a.a==b.a?a.b<b.b:a.a<b.a;}
ll b2[N];
void solve() {
int tot, dlt; ll ans=0;
for (int i=1; i<=n; ++i) p[i].build(a[i], b[i]);
sort(p+1, p+n+1);
for (int i=1; i<=min(n, m+1); ++i) {
//cout<<"i: "<<i<<endl;
tot=0; dlt=i-1;
for (int j=i+1; j<=n; ++j) if (p[j].b<p[i].b) b2[++tot]=p[j].b;
sort(b2+1, b2+tot+1);
if (dlt+tot<=m) ans=max(ans, p[i].a*p[i].b);
//cout<<"tot: "<<tot<<' '<<dlt<<endl;
//cout<<"b2: "; for (int j=1; j<=tot; ++j) cout<<b2[j]<<' '; cout<<endl;
for (int j=i+1,t; j<=n; ++j) {
t = lower_bound(b2+1, b2+tot+1, p[j].b)-b2-1;
//cout<<"t: "<<t<<endl;
if (dlt+t>m) continue;
else ans=max(ans, p[i].a*min(p[i].b, p[j].b));
//cout<<"upd: "<<i<<' '<<j<<' '<<p[i].a*min(p[i].b, p[j].b)<<endl;
}
//cout<<"ans: "<<ans<<endl<<endl;
}
printf("%lld\n", ans);
}
}
namespace task5{
struct rat{ll a, b; inline void build(ll a_, ll b_) {a=a_; b=b_;}}p[N];
inline bool operator < (rat a, rat b) {return a.a==b.a?a.b<b.b:a.a<b.a;}
struct ele{ll a, b; ele(ll a_, ll b_):a(a_),b(b_){} ele(){}};
inline bool operator < (ele a, ele b) {return a.b>b.b;}
priority_queue<ele> q;
void solve() {
//if (n==1) {printf("%lld\n", a[1]*b[1]); return ;}
for (int i=1; i<=n; ++i) p[i].build(a[i], b[i]);
//for (int i=1; i<=n; ++i) cout<<p[i].a<<','<<p[i].b<<endl;
sort(p+1, p+n+1);
ll ans=0, amin=INF, bmin=INF;
for (int i=0; i<=m; ++i) {
//cout<<"i: "<<i<<endl;
amin=INF, bmin=INF;
for (int j=i+1; j<=n; ++j) q.push(ele(p[j].a, p[j].b));
for (int j=i+1; j<=m; ++j) q.pop();
while (!q.empty()) {amin=min(amin, q.top().a); bmin=min(bmin, q.top().b); q.pop();}
//cout<<"min: "<<amin<<' '<<bmin<<endl;
ans=max(ans, amin*bmin);
}
printf("%lld\n", ans);
}
}
namespace task{
struct rat{ll a, b; inline void build(ll a_, ll b_) {a=a_; b=b_;}}p[N];
inline bool operator < (rat a, rat b) {return a.a==b.a?a.b<b.b:a.a<b.a;}
priority_queue< int, vector<int>, greater<int> > q;
void solve() {
//if (n==1) {printf("%lld\n", a[1]*b[1]); return ;}
for (int i=1; i<=n; ++i) p[i].build(a[i], b[i]);
//for (int i=1; i<=n; ++i) cout<<p[i].a<<','<<p[i].b<<endl;
sort(p+1, p+n+1);
ll ans=0;
while (!q.empty()) q.pop();
for (int i=m+1; i<=n; ++i) q.push(p[i].b);
for (int i=m+1; i; --i) {
ans=max(ans, p[i].a*q.top());
q.pop(); q.push(p[i-1].b);
}
printf("%lld\n", ans);
}
}
signed main()
{
#ifdef DEBUG
freopen("1.in", "r", stdin);
#endif
int T;
T=read();
if (!T) return 0;
while (T--) {
bool equal=1;
n=read(); m=read();
for (int i=1; i<=n; ++i) {
a[i]=read(), b[i]=read();
if (i!=1) {if (a[i]!=a[i-1]) equal=0;}
}
//if (0&&n<=25) force::solve();
//else if (!m) task2::solve();
//else if (equal) task1::solve();
//else if (m==n-1) task3::solve();
//else task4::solve();
task::solve();
}
return 0;
}