POCO C++库学习和分析 -- 通知和事件 (三)
POCO C++库学习和分析 -- 通知和事件 (三)
4. 异步通知
4.1 NotificationQueue类
Poco中的异步通知是通过NotificationQueue类来实现的,同它功能类似还有类PriorityNotificationQueue和TimedNotificationQueue。不同的是PriorityNotificationQueue类中对消息分了优先级,对优先级高的消息优先处理;而TimedNotificationQueue对消息给了时间戳,时间戳早的优先处理,而和其压入队列的时间无关。所以接下来我们主要关注NotificationQueue的实现。事实上NotificationQueue是个非常有趣的类。让我们来看一下它的头文件:
class Foundation_API NotificationQueue /// A NotificationQueue object provides a way to implement asynchronous /// notifications. This is especially useful for sending notifications /// from one thread to another, for example from a background thread to /// the main (user interface) thread. /// /// The NotificationQueue can also be used to distribute work from /// a controlling thread to one or more worker threads. Each worker thread /// repeatedly calls waitDequeueNotification() and processes the /// returned notification. Special care must be taken when shutting /// down a queue with worker threads waiting for notifications. /// The recommended sequence to shut down and destroy the queue is to /// 1. set a termination flag for every worker thread /// 2. call the wakeUpAll() method /// 3. join each worker thread /// 4. destroy the notification queue. { public: NotificationQueue(); /// Creates the NotificationQueue. ~NotificationQueue(); /// Destroys the NotificationQueue. void enqueueNotification(Notification::Ptr pNotification); /// Enqueues the given notification by adding it to /// the end of the queue (FIFO). /// The queue takes ownership of the notification, thus /// a call like /// notificationQueue.enqueueNotification(new MyNotification); /// does not result in a memory leak. void enqueueUrgentNotification(Notification::Ptr pNotification); /// Enqueues the given notification by adding it to /// the front of the queue (LIFO). The event therefore gets processed /// before all other events already in the queue. /// The queue takes ownership of the notification, thus /// a call like /// notificationQueue.enqueueUrgentNotification(new MyNotification); /// does not result in a memory leak. Notification* dequeueNotification(); /// Dequeues the next pending notification. /// Returns 0 (null) if no notification is available. /// The caller gains ownership of the notification and /// is expected to release it when done with it. /// /// It is highly recommended that the result is immediately /// assigned to a Notification::Ptr, to avoid potential /// memory management issues. Notification* waitDequeueNotification(); /// Dequeues the next pending notification. /// If no notification is available, waits for a notification /// to be enqueued. /// The caller gains ownership of the notification and /// is expected to release it when done with it. /// This method returns 0 (null) if wakeUpWaitingThreads() /// has been called by another thread. /// /// It is highly recommended that the result is immediately /// assigned to a Notification::Ptr, to avoid potential /// memory management issues. Notification* waitDequeueNotification(long milliseconds); /// Dequeues the next pending notification. /// If no notification is available, waits for a notification /// to be enqueued up to the specified time. /// Returns 0 (null) if no notification is available. /// The caller gains ownership of the notification and /// is expected to release it when done with it. /// /// It is highly recommended that the result is immediately /// assigned to a Notification::Ptr, to avoid potential /// memory management issues. void dispatch(NotificationCenter& notificationCenter); /// Dispatches all queued notifications to the given /// notification center. void wakeUpAll(); /// Wakes up all threads that wait for a notification. bool empty() const; /// Returns true iff the queue is empty. int size() const; /// Returns the number of notifications in the queue. void clear(); /// Removes all notifications from the queue. bool hasIdleThreads() const; /// Returns true if the queue has at least one thread waiting /// for a notification. static NotificationQueue& defaultQueue(); /// Returns a reference to the default /// NotificationQueue. protected: Notification::Ptr dequeueOne(); private: typedef std::deque<Notification::Ptr> NfQueue; struct WaitInfo { Notification::Ptr pNf; Event nfAvailable; }; typedef std::deque<WaitInfo*> WaitQueue; NfQueue _nfQueue; WaitQueue _waitQueue; mutable FastMutex _mutex; };
从定义可以看到NotificationQueue类管理了两个deque容器。其中一个是WaitInfo对象的deque,另一个是Notification对象的deque。而WaitInfo一对一的对应了一个消息对象pNf和事件对象nfAvailable,毫无疑问Event对象是用来同步多线程的。让我们来看看它如何实现。
NotificationQueue实现的巧妙之处就在于WaitInfo由消费者动态创建,消费者线程通过函数Notification* waitDequeueNotification()获取消息,其函数定义如下:
Notification* NotificationQueue::waitDequeueNotification() { Notification::Ptr pNf; WaitInfo* pWI = 0; { FastMutex::ScopedLock lock(_mutex); pNf = dequeueOne(); if (pNf) return pNf.duplicate(); pWI = new WaitInfo; _waitQueue.push_back(pWI); } pWI->nfAvailable.wait(); pNf = pWI->pNf; delete pWI; return pNf.duplicate(); } Notification::Ptr NotificationQueue::dequeueOne() { Notification::Ptr pNf; if (!_nfQueue.empty()) { pNf = _nfQueue.front(); _nfQueue.pop_front(); } return pNf; }
消费者线程首先从Notification对象的deque中获取消息,如果消息获取不为空,则直接返回处理,如果消息为空,则创建一个新的WaitInfo对象,并压入WaitInfo对象的
deque。 消费者线程开始等待,直到生产者通知有消息的存在,然后再从WaitInfo对象中取出消息,返回处理。当消费者线程能从Notification对象的deque中获取到消息时,说明消费者处理消息的速度要比生成者低;反之则说明消费者处理消息的速度要比生成者高。
让我们再看一下生产者的调用函数void NotificationQueue::enqueueNotification(Notification::Ptr pNotification),其定义如下:
void NotificationQueue::enqueueNotification(Notification::Ptr pNotification) { poco_check_ptr (pNotification); FastMutex::ScopedLock lock(_mutex); if (_waitQueue.empty()) { _nfQueue.push_back(pNotification); } else { WaitInfo* pWI = _waitQueue.front(); _waitQueue.pop_front(); pWI->pNf = pNotification; pWI->nfAvailable.set(); } }
生产者线程首先判断WaitInfo对象的deque是否为空,如果不为空,说明存在消费者线程等待,则从deque中获取一个WaitInfo对象,灌入Notification消息,释放信号量激活消费者线程;而如果为空,说明目前说有的消费者线程都在工作,则把消息暂时存入Notification对象的deque,等待消费者线程有空时处理。
整个处理过程中对于_mutex对象的处理是非常小心的,_waitQueue不被使用则释放。OK,整个流程结束,消息源和目标被解耦。
4.2 一个异步通知的例子
#include "Poco/Notification.h" #include "Poco/NotificationQueue.h" #include "Poco/ThreadPool.h" #include "Poco/Runnable.h" #include "Poco/AutoPtr.h" using Poco::Notification; using Poco::NotificationQueue; using Poco::ThreadPool; using Poco::Runnable; using Poco::AutoPtr; class WorkNotification: public Notification { public: WorkNotification(int data): _data(data) {} int data() const { return _data; } private: int _data; }; class Worker: public Runnable { public: Worker(NotificationQueue& queue): _queue(queue) {} void run() { AutoPtr<Notification> pNf(_queue.waitDequeueNotification()); while (pNf) { WorkNotification* pWorkNf = dynamic_cast<WorkNotification*>(pNf.get()); if (pWorkNf) { // do some work } pNf = _queue.waitDequeueNotification(); } } private: NotificationQueue& _queue; }; int main(int argc, char** argv) { NotificationQueue queue; Worker worker1(queue); // create worker threads Worker worker2(queue); ThreadPool::defaultPool().start(worker1); // start workers ThreadPool::defaultPool().start(worker2); // create some work for (int i = 0; i < 100; ++i) { queue.enqueueNotification(new WorkNotification(i)); } while (!queue.empty()) // wait until all work is done Poco::Thread::sleep(100); queue.wakeUpAll(); // tell workers they're done ThreadPool::defaultPool().joinAll(); return 0; }
4.3 异步通知的类图
最后给出异步通知的类图:
(版权所有,转载时请注明作者和出处 http://blog.csdn.net/arau_sh/article/details/8673543)