POCO C++库学习和分析 -- 通知和事件 (三)

POCO C++库学习和分析 -- 通知和事件 (三)

4. 异步通知

4.1 NotificationQueue类

         Poco中的异步通知是通过NotificationQueue类来实现的,同它功能类似还有类PriorityNotificationQueue和TimedNotificationQueue。不同的是PriorityNotificationQueue类中对消息分了优先级,对优先级高的消息优先处理;而TimedNotificationQueue对消息给了时间戳,时间戳早的优先处理,而和其压入队列的时间无关。所以接下来我们主要关注NotificationQueue的实现。
        事实上NotificationQueue是个非常有趣的类。让我们来看一下它的头文件:

class Foundation_API NotificationQueue
	/// A NotificationQueue object provides a way to implement asynchronous
	/// notifications. This is especially useful for sending notifications
	/// from one thread to another, for example from a background thread to 
	/// the main (user interface) thread. 
	/// 
	/// The NotificationQueue can also be used to distribute work from
	/// a controlling thread to one or more worker threads. Each worker thread
	/// repeatedly calls waitDequeueNotification() and processes the
	/// returned notification. Special care must be taken when shutting
	/// down a queue with worker threads waiting for notifications.
	/// The recommended sequence to shut down and destroy the queue is to
	///   1. set a termination flag for every worker thread
	///   2. call the wakeUpAll() method
	///   3. join each worker thread
	///   4. destroy the notification queue.
{
public:
	NotificationQueue();
		/// Creates the NotificationQueue.

	~NotificationQueue();
		/// Destroys the NotificationQueue.

	void enqueueNotification(Notification::Ptr pNotification);
		/// Enqueues the given notification by adding it to
		/// the end of the queue (FIFO).
		/// The queue takes ownership of the notification, thus
		/// a call like
		///     notificationQueue.enqueueNotification(new MyNotification);
		/// does not result in a memory leak.
		
	void enqueueUrgentNotification(Notification::Ptr pNotification);
		/// Enqueues the given notification by adding it to
		/// the front of the queue (LIFO). The event therefore gets processed
		/// before all other events already in the queue.
		/// The queue takes ownership of the notification, thus
		/// a call like
		///     notificationQueue.enqueueUrgentNotification(new MyNotification);
		/// does not result in a memory leak.

	Notification* dequeueNotification();
		/// Dequeues the next pending notification.
		/// Returns 0 (null) if no notification is available.
		/// The caller gains ownership of the notification and
		/// is expected to release it when done with it.
		///
		/// It is highly recommended that the result is immediately
		/// assigned to a Notification::Ptr, to avoid potential
		/// memory management issues.

	Notification* waitDequeueNotification();
		/// Dequeues the next pending notification.
		/// If no notification is available, waits for a notification
		/// to be enqueued. 
		/// The caller gains ownership of the notification and
		/// is expected to release it when done with it.
		/// This method returns 0 (null) if wakeUpWaitingThreads()
		/// has been called by another thread.
		///
		/// It is highly recommended that the result is immediately
		/// assigned to a Notification::Ptr, to avoid potential
		/// memory management issues.

	Notification* waitDequeueNotification(long milliseconds);
		/// Dequeues the next pending notification.
		/// If no notification is available, waits for a notification
		/// to be enqueued up to the specified time.
		/// Returns 0 (null) if no notification is available.
		/// The caller gains ownership of the notification and
		/// is expected to release it when done with it.
		///
		/// It is highly recommended that the result is immediately
		/// assigned to a Notification::Ptr, to avoid potential
		/// memory management issues.

	void dispatch(NotificationCenter& notificationCenter);
		/// Dispatches all queued notifications to the given
		/// notification center.

	void wakeUpAll();
		/// Wakes up all threads that wait for a notification.
	
	bool empty() const;
		/// Returns true iff the queue is empty.
		
	int size() const;
		/// Returns the number of notifications in the queue.

	void clear();
		/// Removes all notifications from the queue.
		
	bool hasIdleThreads() const;	
		/// Returns true if the queue has at least one thread waiting 
		/// for a notification.
		
	static NotificationQueue& defaultQueue();
		/// Returns a reference to the default
		/// NotificationQueue.

protected:
	Notification::Ptr dequeueOne();
	
private:
	typedef std::deque<Notification::Ptr> NfQueue;
	struct WaitInfo
	{
		Notification::Ptr pNf;
		Event             nfAvailable;
	};
	typedef std::deque<WaitInfo*> WaitQueue;

	NfQueue           _nfQueue;
	WaitQueue         _waitQueue;
	mutable FastMutex _mutex;
};

        从定义可以看到NotificationQueue类管理了两个deque容器。其中一个是WaitInfo对象的deque,另一个是Notification对象的deque。而WaitInfo一对一的对应了一个消息对象pNf和事件对象nfAvailable,毫无疑问Event对象是用来同步多线程的。让我们来看看它如何实现。
        NotificationQueue实现的巧妙之处就在于WaitInfo由消费者动态创建,消费者线程通过函数Notification* waitDequeueNotification()获取消息,其函数定义如下:
Notification* NotificationQueue::waitDequeueNotification()
{
	Notification::Ptr pNf;
	WaitInfo* pWI = 0;
	{
		FastMutex::ScopedLock lock(_mutex);
		pNf = dequeueOne();
		if (pNf) return pNf.duplicate();
		pWI = new WaitInfo;
		_waitQueue.push_back(pWI);
	}
	pWI->nfAvailable.wait();
	pNf = pWI->pNf;
	delete pWI;
	return pNf.duplicate();
}

Notification::Ptr NotificationQueue::dequeueOne()
{
	Notification::Ptr pNf;
	if (!_nfQueue.empty())
	{
		pNf = _nfQueue.front();
		_nfQueue.pop_front();
	}
	return pNf;
}

        消费者线程首先从Notification对象的deque中获取消息,如果消息获取不为空,则直接返回处理,如果消息为空,则创建一个新的WaitInfo对象,并压入WaitInfo对象的
deque。 消费者线程开始等待,直到生产者通知有消息的存在,然后再从WaitInfo对象中取出消息,返回处理。当消费者线程能从Notification对象的deque中获取到消息时,说明消费者处理消息的速度要比生成者低;反之则说明消费者处理消息的速度要比生成者高。

        让我们再看一下生产者的调用函数void NotificationQueue::enqueueNotification(Notification::Ptr pNotification),其定义如下:
void NotificationQueue::enqueueNotification(Notification::Ptr pNotification)
{
	poco_check_ptr (pNotification);
	FastMutex::ScopedLock lock(_mutex);
	if (_waitQueue.empty())
	{
		_nfQueue.push_back(pNotification);
	}
	else
	{
		WaitInfo* pWI = _waitQueue.front();
		_waitQueue.pop_front();
		pWI->pNf = pNotification;
		pWI->nfAvailable.set();
	}	
}

        生产者线程首先判断WaitInfo对象的deque是否为空,如果不为空,说明存在消费者线程等待,则从deque中获取一个WaitInfo对象,灌入Notification消息,释放信号量激活消费者线程;而如果为空,说明目前说有的消费者线程都在工作,则把消息暂时存入Notification对象的deque,等待消费者线程有空时处理。
        整个处理过程中对于_mutex对象的处理是非常小心的,_waitQueue不被使用则释放。OK,整个流程结束,消息源和目标被解耦。

4.2 一个异步通知的例子

#include "Poco/Notification.h"
#include "Poco/NotificationQueue.h"
#include "Poco/ThreadPool.h"
#include "Poco/Runnable.h"
#include "Poco/AutoPtr.h"
using Poco::Notification;
using Poco::NotificationQueue;
using Poco::ThreadPool;
using Poco::Runnable;
using Poco::AutoPtr;
class WorkNotification: public Notification
{
public:
	WorkNotification(int data): _data(data) {}
	int data() const
	{
		return _data;
	}
private:
	int _data;
};


class Worker: public Runnable
{
public:
	Worker(NotificationQueue& queue): _queue(queue) {}
	void run()
	{
		AutoPtr<Notification> pNf(_queue.waitDequeueNotification());
		while (pNf)
		{
			WorkNotification* pWorkNf =
				dynamic_cast<WorkNotification*>(pNf.get());
			if (pWorkNf)
			{
				// do some work
			}
			pNf = _queue.waitDequeueNotification();
		}
	}
private:
	NotificationQueue& _queue;
};


int main(int argc, char** argv)
{
	NotificationQueue queue;
	Worker worker1(queue); // create worker threads
	Worker worker2(queue);
	ThreadPool::defaultPool().start(worker1); // start workers
	ThreadPool::defaultPool().start(worker2);
	// create some work
	for (int i = 0; i < 100; ++i)
	{
		queue.enqueueNotification(new WorkNotification(i));
	}
	while (!queue.empty()) // wait until all work is done
		Poco::Thread::sleep(100);
	queue.wakeUpAll(); // tell workers they're done
	ThreadPool::defaultPool().joinAll();
	return 0;
}

4.3 异步通知的类图

        最后给出异步通知的类图:



(版权所有,转载时请注明作者和出处  http://blog.csdn.net/arau_sh/article/details/8673543

posted @ 2013-03-14 22:07  在天与地之间  阅读(1962)  评论(0编辑  收藏  举报