Linear Algebra Lecture5 note

Section 2.7     PA=LU

and Section 3.1   Vector Spaces and Subspaces

 


 

Transpose(转置)

image

example:

image

特殊情况,对称矩阵(symmetric matrices),例如:

image

image

思考:R^R(R的转置乘以R)有什么特殊的?

回答:always symmetric

image

why?

image

 


 

Permutation(置换)

P=execute row exchanges

image

之前A=LU是建立在no row exchanges 的基础上的,但不可能每一个矩阵都是完美的,有些矩阵需要通过行变换处理,

即PA=LU (any invertible A)

P= indentity matrix with reordered rows

置换矩阵是重新排列了的单位矩阵

counts reorderings(counts all the n * n permutations : n!

性质:

image

 


 

Vector Spaces

Example:

R^2= all 2 dimensional real vectors = “x-y”plane,

 image

R^3= all vectors with 3 component

image

R^n = all vectors with n component

思考:not  a  vector space? what’s the condition?

回答:向量空间必须对数乘和加法两种运算是封闭的(线性组合封闭)

比如说,二维平面子空间  line in R^2 through zero vector

总结:

subspaces of R^2: all of R^2(itself), any line through zero vector (L), zero vector only (Z)

subspaces of R^3: all of R^3(itself), any plane through zero vector (P), any line through zero vector (L), zero vector only (Z)

example:

image

cols in R^3, all their combinations form a subspace called column space, C(A)

posted @ 2016-10-28 12:50  nanocare  阅读(144)  评论(0编辑  收藏  举报