Linear Algebra lecture3 note

Matrix multiplication(4 ways!)

Inverse of A

Gauss-Jordan / find inverse of A

 


 

Matrix multiplication

1、点积法

image

image

2、matrix * column=comb of columns

image

columns of C are comb of cols of A

3、matrix * row = comb of rows

image

rows of C are comb of rows of B

4、matrix * matrix=comb of row*col

image

AB=sum of (cols of A )*(rows of B)

another example:

image

*5、Block (分块行 * 分块列)

image

 


 

Inverses( Square matrices)

if  inverse of A exits, then

image

invertible, non-singular

思考如何求此矩阵的逆,矩阵及其逆应满足条件:

image

设逆矩阵由元素a,b,c,d构成,如图:

image

image

以上讨论的都是逆矩阵存在的情况,下面举例讨论逆矩阵不存在的情况(singular case,no inverse),

image

可以从以下三方面来解释:

1、行列式为0

2、假设A`存在,A中两列向量共线,所以不可能通过线性组合构成单位矩阵,AA`≠I,就没有A`的说法了

3、You can find a vector X with AX=0 (X≠0)

image

由于AX=0,假设A`存在,等式两边同时乘以A`,A`AX=A`0=0, IX=0,X=0 与 X≠0矛盾,故假设不成立

若矩阵中其中一列对线性组合毫无贡献,则矩阵不可能有逆

 


 

Gauss Jordan(solve 2 equations at once)

image

image

可得到A的逆矩阵形式为:

image

解释推导:

image

posted @ 2016-10-27 12:32  nanocare  阅读(202)  评论(0编辑  收藏  举报