NVIDIA VideoFX SDK使用
环境搭建
1. docker pull qiushenjie/cuda11.1-cudnn8-devel-ubuntu18.04-python3.6:latest
2. download tensorrt https://developer.nvidia.com/compute/machine-learning/tensorrt/secure/7.2.2/tars/TensorRT-7.2.2.3.CentOS-7.6.x86_64-gnu.cuda-11.1.cudnn8.0.tar.gz
3. download NVIDIA Video Effects SDK https://developer.nvidia.com/maxine-getting-started
SDK要求的环境必须的软件版本
没办法,笔者只能在docker容器中来操作了
cmake >= 3.10.x
Ubuntu==18.04
TensorRT==7.2.2.3
CUDA==11.1
cuDNN==8.x
解压到容器的/usr/local/下
tar -zxvf TensorRT-7.2.2.3.Ubuntu-18.04.x86_64-gnu.cuda-11.1.cudnn8.0.tar.gz -C /usr/local
tar -zxvf VideoFX-ubuntu18.04-x86_64-0.6.0.0.tar.gz -C /usr/local
编译SDK的示例
cd VideoFX/share ./build_samples.sh [yes] \n
最终结果可以在[yes]这部输入指定路径,否则示例默认安装到~/mysamples
运行示例
cd ~/mysamples . ./setup_env.sh VideoEffectsApp \ --model_dir=$_VFX_MODELS \ --in_file=$_VFX_SHARE/samples/input/input2.jpg \ --out_file=sr_1.png \ --effect=SuperRes \ --resolution=2160 \ --strength=1 \ --show=false \ --verbose=true