python之迭代器与生成器

迭代器

迭代器介绍

迭代是Python最强大的功能之一,是访问集合元素的一种方式。

迭代器是一个可以记住遍历的位置的对象。

迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。

迭代器有两个基本的方法:iter()next()

字符串,列表或元组对象都可用于创建迭代器:

创建一个迭代器

class Demo(object):
    def __iter__(self):
        # 需要返回一个迭代器,否则无法进行for...in循环
        # MyIterator 要重写  __next__ 方法以后,它就是一个迭代器
        it = MyIterator()
        return it


class MyIterator(object):
    count = 0

    def __next__(self):
        if self.count < 5:
            self.count += 1
            return 'hello world'
        else:
            raise StopIteration  # 抛出一个StopIteration异常


d = Demo()
# print(isinstance(d, Iterable))
for i in d:
    print(i)

如何判断一个对象是否可以迭代

可以使用 isinstance() 判断一个对象是否是 Iterable 对象:

In [50]: from collections import Iterable

In [51]: isinstance([], Iterable)
Out[51]: True

In [52]: isinstance({}, Iterable)
Out[52]: True

In [53]: isinstance('abc', Iterable)
Out[53]: True

In [54]: isinstance(mylist, Iterable)
Out[54]: False

In [55]: isinstance(100, Iterable)
Out[55]: False

迭代器的应用场景(斐波那契迭代器实现)

我们发现迭代器最核心的功能就是可以通过next()函数的调用来返回下一个数据值。如果每次返回的数据值不是在一个已有的数据集合中读取的,而是通过程序按照一定的规律计算生成的,那么也就意味着可以不用再依赖一个已有的数据集合,也就是说不用再将所有要迭代的数据都一次性缓存下来供后续依次读取,这样可以节省大量的存储(内存)空间。

举个例子,比如,数学中有个著名的斐波拉契数列(Fibonacci),数列中第一个数为0,第二个数为1,其后的每一个数都可由前两个数相加得到:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

现在我们想要通过for...in...循环来遍历迭代斐波那契数列中的前n个数。那么这个斐波那契数列我们就可以用迭代器来实现,每次迭代都通过数学计算来生成下一个数。

class FibIterator(object):
    """斐波那契数列迭代器"""
    def __init__(self, n):
        """
        :param n: int, 指明生成数列的前n个数
        """
        self.n = n
        # current用来保存当前生成到数列中的第几个数了
        self.current = 0
        # num1用来保存前前一个数,初始值为数列中的第一个数0
        self.num1 = 0
        # num2用来保存前一个数,初始值为数列中的第二个数1
        self.num2 = 1

    def __next__(self):
        """被next()函数调用来获取下一个数"""
        if self.current < self.n:
            num = self.num1
            self.num1, self.num2 = self.num2, self.num1+self.num2
            self.current += 1
            return num
        else:
            raise StopIteration

    def __iter__(self):
        """迭代器的__iter__返回自身即可"""
        return self


if __name__ == '__main__':
    fib = FibIterator(10)
    for num in fib:
        print(num, end=" ")

生成器

生成器介绍

在 Python 中,使用了 yield 的函数被称为生成器(generator)。

跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。

在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。

调用一个生成器函数,返回的是一个迭代器对象。

创建生成器方法1

要创建一个生成器,有很多种方法。第一种方法很简单,只要把一个列表生成式的 [ ] 改成 ( )

In [15]: L = [ x*2 for x in range(5)]

In [16]: L
Out[16]: [0, 2, 4, 6, 8]

In [17]: G = ( x*2 for x in range(5))

In [18]: G
Out[18]: <generator object <genexpr> at 0x7f626c132db0>

In [19]:

创建 L 和 G 的区别仅在于最外层的 [ ] 和 ( ) , L 是一个列表,而 G 是一个生成器。我们可以直接打印出列表L的每一个元素,而对于生成器G,我们可以按照迭代器的使用方法来使用,即可以通过next()函数、for循环、list()等方法使用。

In [15]: L = [ x*2 for x in range(5)]

In [16]: L
Out[16]: [0, 2, 4, 6, 8]

In [17]: G = ( x*2 for x in range(5))

In [18]: G
Out[18]: <generator object <genexpr> at 0x7f626c132db0>

In [19]:
Copy
创建 L 和 G 的区别仅在于最外层的 [ ] 和 ( ) , L 是一个列表,而 G 是一个生成器。我们可以直接打印出列表L的每一个元素,而对于生成器G,我们可以按照迭代器的使用方法来使用,即可以通过next()函数、for循环、list()等方法使用。

In [19]: next(G)
Out[19]: 0

In [20]: next(G)
Out[20]: 2

In [21]: next(G)
Out[21]: 4

In [22]: next(G)
Out[22]: 6

In [23]: next(G)
Out[23]: 8

In [24]: next(G)
---------------------------------------------------------------------------
StopIteration                             Traceback (most recent call last)
<ipython-input-24-380e167d6934> in <module>()
----> 1 next(G)

StopIteration:

In [25]:
In [26]: G = ( x*2 for x in range(5))

In [27]: for x in G:
   ....:     print(x)
   ....:     
0
2
4
6
8

In [28]:

创建生成器方法2

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的 for 循环无法实现的时候,还可以用函数来实现。

我们仍然用上一节提到的斐波那契数列来举例:

class FibIterator(object):
    """斐波那契数列迭代器"""
    def __init__(self, n):
        """
        :param n: int, 指明生成数列的前n个数
        """
        self.n = n
        # current用来保存当前生成到数列中的第几个数了
        self.current = 0
        # num1用来保存前前一个数,初始值为数列中的第一个数0
        self.num1 = 0
        # num2用来保存前一个数,初始值为数列中的第二个数1
        self.num2 = 1

    def __next__(self):
        """被next()函数调用来获取下一个数"""
        if self.current < self.n:
            num = self.num1
            self.num1, self.num2 = self.num2, self.num1+self.num2
            self.current += 1
            return num
        else:
            raise StopIteration

    def __iter__(self):
        """迭代器的__iter__返回自身即可"""
        return self

在使用生成器实现的方式中,我们将原本在迭代器__next__方法中实现的基本逻辑放到一个函数中来实现,但是将每次迭代返回数值的return换成了yield,此时新定义的函数便不再是函数,而是一个生成器了。简单来说:只要在def中有yield关键字的 就称为 生成器

In [38]: for n in fib(5):
   ....:     print(n)
   ....:     
1
1
2
3
5

In [39]:

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

In [39]: g = fib(5)

In [40]: while True:
   ....:     try:
   ....:         x = next(g)
   ....:         print("value:%d"%x)      
   ....:     except StopIteration as e:
   ....:         print("生成器返回值:%s"%e.value)
   ....:         break
   ....:     
value:1
value:1
value:2
value:3
value:5
生成器返回值:done

In [41]:

总结

  • 使用了yield关键字的函数不再是函数,而是生成器。(使用了yield的函数就是生成器)
  • yield关键字有两点作用:
    • 保存当前运行状态(断点),然后暂停执行,即将生成器(函数)挂起
    • 将yield关键字后面表达式的值作为返回值返回,此时可以理解为起到了return的作用
  • 可以使用next()函数让生成器从断点处继续执行,即唤醒生成器(函数)
  • Python3中的生成器可以使用return返回最终运行的返回值,而Python2中的生成器不允许使用return返回一个返回值(即可以使用return从生成器中退出,但return后不能有任何表达式)。
posted @ 2019-12-04 10:26  南歌先生  阅读(345)  评论(0编辑  收藏  举报