NOIP 模拟 $86\; \rm shiki$
题解 \(by\;zj\varphi\)
每次对于当前的字符,枚举字符集。
显然当前状态一定由当前枚举的字符上一次出现的位置转移而来的,最后用 hash
或 map
映射一下当前两个字符所对应的所有字符串的奇异值之和。
复杂度为 \(\mathcal{O\rm(26*n)}\) 或 \(\mathcal{O\rm(26*nlogn)}\)。
Code
#include<bits/stdc++.h>
#define ri signed
#define pd(i) ++i
#define bq(i) --i
#define func(x) std::function<x>
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
#define debug1(x) std::cerr << #x"=" << x << ' '
#define debug2(x) std::cerr << #x"=" << x << std::endl
#define Debug(x) assert(x)
struct nanfeng_stream{
template<typename T>inline nanfeng_stream &operator>>(T &x) {
bool f=false;x=0;char ch=gc();
while(!isdigit(ch)) f|=ch=='-',ch=gc();
while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=gc();
return x=f?-x:x,*this;
}
}cin;
}
using IO::cin;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
using ll=long long;
static const int N=1e5+7;
int lst[30],n,m,k;
char s[N],t[10];
ll dp[N],ans;
std::map<std::string,ll> mp;
auto ch=[](char s) {return s-'a';};
inline int main() {
FI=freopen("shiki.in","r",stdin);
FO=freopen("shiki.out","w",stdout);
scanf("%d%s%d",&n,s+1,&m);
for (ri i(1);i<=m;pd(i)) {
scanf("%s%s%d",t+1,t+2,&k);
mp[std::string(t+1)]+=k;
}
lst[ch(s[1])]=1;
for (ri i(2);i<=n;pd(i)) {
t[2]=s[i];
for (ri j(0);j<26;pd(j)) {
if (!lst[j]) continue;
t[1]=j+'a';
dp[i]=cmax(dp[i],dp[lst[j]]+mp[std::string(t+1)]);
}
lst[ch(s[i])]=i;
ans=cmax(ans,dp[i]);
}
printf("%lld\n",ans);
return 0;
}
}
int main() {return nanfeng::main();}