NOIP 模拟 $84\; \rm 寻找道路$
题解 \(by\;zj\varphi\)
先把所有到 1 节点距离为 0 的节点加到队列里,然后进行 bfs。
bfs 每次遍历一个点的出边时,先遍历权值为 0 的边,再遍历权值为 1 的边,这样可以保证每次一个点被转移的时候一定是最小距离。
Code
#include<bits/stdc++.h>
#define ri signed
#define pd(i) ++i
#define bq(i) --i
#define func(x) std::function<x>
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
#define debug1(x) std::cerr << #x"=" << x << ' '
#define debug2(x) std::cerr << #x"=" << x << std::endl
#define Debug(x) assert(x)
struct nanfeng_stream{
template<typename T>inline nanfeng_stream &operator>>(T &x) {
bool f=false;x=0;char ch=gc();
while(!isdigit(ch)) f|=ch=='-',ch=gc();
while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=gc();
return x=f?-x:x,*this;
}
}cin;
}
using IO::cin;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
static const int N=1e6+7,MOD=1e9+7;
struct edge{int v,nxt,w;}e[N<<1];
int first[N],t=1,dep[N],dis[N],que[N],st[N],hd=1,tl,n,m;
bool vis[N];
auto add=[](int u,int v,int w) {e[t]={v,first[u],w},first[u]=t++;};
func(void(int)) dfs=[](int x) {
dep[x]=dis[x]=0;
vis[x]=true;
que[++tl]=x;
for (ri i(first[x]),v;i;i=e[i].nxt) {
if (vis[v=e[i].v]||e[i].w) continue;
dfs(v);
}
};
inline int main() {
FI=freopen("path.in","r",stdin);
FO=freopen("path.out","w",stdout);
cin >> n >> m;
memset(dis+1,-1,sizeof(int)*n);
for (ri i(1),u,v,w;i<=m;pd(i)) cin >> u >> v >> w,add(u,v,w);
dfs(1);
for (ri i(1);i<=n;pd(i)) {
int cnt=0,lsp=dep[que[hd]],lss=dis[que[hd]];
while(hd<=tl&&dep[que[hd]]==lsp&&dis[que[hd]]==lss) st[++cnt]=que[hd++];
for (ri j(1);j<=cnt;pd(j)) {
int x=st[j];
for (ri k(first[x]),v;k;k=e[k].nxt) {
if (vis[v=e[k].v]||e[k].w) continue;
dep[v]=dep[x]+1;
dis[v]=(dis[x]<<1)%MOD;
vis[que[++tl]=v]=true;
}
}
for (ri j(1);j<=cnt;pd(j)) {
int x=st[j];
for (ri k(first[x]),v;k;k=e[k].nxt) {
if (vis[v=e[k].v]||!e[k].w) continue;
dep[v]=dep[x]+1;
dis[v]=((dis[x]<<1)+1)%MOD;
vis[que[++tl]=v]=true;
}
}
}
for (ri i(2);i<=n;pd(i)) printf("%d ",dis[i]);
return 0;
}
}
int main() {return nanfeng::main();}