Loading

NOIP 模拟 $79\; \rm f$

题解 \(by\;zj\varphi\)

根据期望的线性性可得,把每个点被删的概率加起来即为答案。

设有 \(c_i\) 个点可以到 \(i\),那么这个点被删的概率就是 \(\frac{i}{c_i}\),因为只有这 \(c_i\) 个点可以控制它(自己本身也算),所以只能从这 \(c_i\) 个点中选一个。

Code
#include<bits/stdc++.h>
#define ri signed
#define pd(i) ++i
#define bq(i) --i
#define func(x) std::function<x>
namespace IO{
    char buf[1<<21],*p1=buf,*p2=buf;
    #define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
    #define debug1(x) std::cerr << #x"=" << x << ' '
    #define debug2(x) std::cerr << #x"=" << x << std::endl
    #define Debug(x) assert(x)
    struct nanfeng_stream{
        template<typename T>inline nanfeng_stream &operator>>(T &x) {
            bool f=false;x=0;char ch=gc();
            while(!isdigit(ch)) f|=ch=='-',ch=gc();
            while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=gc();
            return x=f?-x:x,*this;
        }
    }cin;
}
using IO::cin;
namespace nanfeng{
    #define pb emplace_back
    #define FI FILE *IN
    #define FO FILE *OUT
    template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
    template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
    using ll=long long;
    static const int N=1e3+7,MOD=998244353;
    int n,cnt;
    ll ans;
    bool vis[N];
    std::vector<int> G[N];
    char s[N];
    auto fpow=[](int x,int y) {
        int res=1;
        while(y) {
            if (y&1) res=1ll*res*x%MOD;
            x=1ll*x*x%MOD;
            y>>=1;
        }
        return res;
    };
    func(void(int)) dfs=[](int x) {
        ++cnt;
        vis[x]=true;
        for (auto v:G[x]) if (!vis[v]) dfs(v);
    };
    inline int main() {
        FI=freopen("f.in","r",stdin);
        FO=freopen("f.out","w",stdout);
        std::cin >> n;
        for (ri i(1);i<=n;pd(i)) {
            scanf("%s",s+1);
            for (ri j(1);j<=n;pd(j)) if (s[j]=='1') G[j].pb(i);
        }
        for (ri i(1);i<=n;pd(i)) {
            cnt=0;
            memset(vis+1,false,sizeof(bool)*n);
            dfs(i);
            ans+=fpow(cnt,MOD-2);
        }
        printf("%lld\n",ans%MOD);
        return 0;
    }
}
int main() {return nanfeng::main();}
posted @ 2021-10-18 11:11  ナンカエデ  阅读(33)  评论(0编辑  收藏  举报