NOIP 模拟 $38\; \rm c$
题解 \(by\;zj\varphi\)
发现就是一棵树,但每条边都有多种不同的颜色,其实只需要保留随便三种颜色即可。
直接点分治,将询问离线,分成一端为重心,和两端都不为重心的情况。
每次只关心经过重心的询问,其他询问不管,具体实现就是点分治的套路,每次搜一棵子树,更新标记。
动规有些小细节,尽量边权化点权,不容易出错,式子直接看官方题解。
复杂度 \(\mathcal O\rm(3^3nlogn+3^4q)\)
Code
#include<bits/stdc++.h>
#define Re register
#define ri Re signed
#define p(i) ++i
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
struct nanfeng_stream{
template<typename T>inline nanfeng_stream &operator>>(T &x) {
Re bool f=0;x=0;Re char ch=gc();
while(!isdigit(ch)) f|=ch=='-',ch=gc();
while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=gc();
return x=f?-x:x,*this;
}
}cin;
}
using IO::cin;
namespace nanfeng{
#define node(x,y) (node){x,y}
#define pb emplace_back
#define fi first
#define se second
#define mk std::make_pair
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x, T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x, T y) {return x>y?y:x;}
static const int N=1e5+7;
int first[N],dp[N][4][4],W[N][4],nm[N],tmp[4],G[N],siz[N],ans[N<<2],vis[N],dep,rt,pos,q,cnt,t=1,n,m;
struct node{int v,i;}ask;
std::vector<node> vc[N];
struct edge{int v,nxt,w[4],nm;}e[N<<1];
std::map<std::pair<int,int>,std::set<int> > mp;
inline void add(int u,int v,int *w,int nm) {
e[t].v=v,e[t].nm=nm;
for (ri i(1);i<=nm;p(i)) e[t].w[i]=w[i];
e[t].nxt=first[u],first[u]=t++;
e[t].v=u,e[t].nm=nm;
for (ri i(1);i<=nm;p(i)) e[t].w[i]=w[i];
e[t].nxt=first[v],first[v]=t++;
}
void dfs_find(int S,int x,int fa) {
siz[x]=1;
int GS=0;
for (ri i(first[x]),v;i;i=e[i].nxt) {
if ((v=e[i].v)==fa||G[v]) continue;
dfs_find(S,v,x);
siz[x]+=siz[v];
GS=cmax(GS,siz[v]);
}
GS=cmax(GS,S-siz[x]);
if (GS<cnt) cnt=GS,pos=x;
}
void dfs_solve(int x,int fa) {
siz[x]=1;
for (ri i(first[x]),v;i;i=e[i].nxt) {
if ((v=e[i].v)==fa||G[v]) continue;
for (ri j(1);j<=e[i].nm;p(j)) W[v][j]=e[i].w[j];
nm[v]=e[i].nm;
for (ri l(1);l<=nm[rt];p(l))
for (ri j(1);j<=nm[v];p(j))
for (ri k(1);k<=nm[x];p(k))
if (W[x][k]==W[v][j]) dp[v][l][j]=cmax(dp[v][l][j],dp[x][l][k]);
else dp[v][l][j]=cmax(dp[v][l][j],dp[x][l][k]+1);
dfs_solve(v,x);
siz[x]+=siz[v];
}
}
void dfs_query(int x,int fa) {
for (auto nx:vc[x]) {
if (!vis[nx.v]&&nx.v!=pos) continue;
if (nx.v==pos) {
for (ri i(1);i<=nm[rt];p(i))
for (ri j(1);j<=nm[x];p(j))
ans[nx.i]=cmax(ans[nx.i],dp[x][i][j]);
} else {
for (ri i(1);i<=nm[rt];p(i))
for (ri j(1);j<=nm[vis[nx.v]];p(j))
for (ri k(1);k<=nm[x];p(k))
for (ri l(1);l<=nm[nx.v];p(l)) {
if (W[vis[nx.v]][j]==W[rt][i]) ans[nx.i]=cmax(ans[nx.i],dp[x][i][k]+dp[nx.v][j][l]-1);
else ans[nx.i]=cmax(ans[nx.i],dp[x][i][k]+dp[nx.v][j][l]);
}
}
}
for (ri i(first[x]),v;i;i=e[i].nxt) {
if ((v=e[i].v)==fa||G[v]) continue;
dfs_query(v,x);
}
}
void dfs_mark(int x,int fa) {
vis[x]=rt;
for (ri i(first[x]),v;i;i=e[i].nxt) {
if ((v=e[i].v)==fa||G[v]) continue;
dfs_mark(v,x);
}
}
void dfs_init(int x,int fa) {
vis[x]=0;
memset(dp[x],0,sizeof(dp[x]));
for (ri i(first[x]),v;i;i=e[i].nxt) {
if (G[v=e[i].v]||v==fa) continue;
dfs_init(v,x);
}
}
void solve(int S,int x) {
dfs_find(cnt=S,x,0);
dfs_init(pos,0);
int np;
G[np=pos]=1;
for (ri i(first[np]),v;i;i=e[i].nxt) {
if (G[v=e[i].v]) continue;
for (ri j(1);j<=e[i].nm;p(j)) dp[v][j][j]=1,W[v][j]=e[i].w[j];
nm[v]=e[i].nm;
dfs_solve(rt=v,np);
dfs_query(v,np);
dfs_mark(v,np);
}
dfs_init(pos,0);
for (ri i(first[np]),v;i;i=e[i].nxt) {
if (G[v=e[i].v]) continue;
solve(siz[v],v);
}
}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
cin >> n >> m;
for (ri i(1),u,v,w;i<=m;p(i)) {
cin >> u >> v >> w;
if (u>v) std::swap(u,v);
mp[mk(u,v)].insert(w);
}
for (auto x:mp) {
ri ct=0;
Re std::pair<int,int> tp=x.fi;
Re std::set<int> tps=x.se;
if (tps.size()>3) for (auto w:tps) {tmp[++ct]=w;if (ct==3) break;}
else for (auto w:tps) tmp[++ct]=w;
add(tp.fi,tp.se,tmp,ct);
}
cin >> q;
for (ri i(1),u,v;i<=q;p(i)) cin >> u >> v,vc[u].pb(node(v,i)),vc[v].pb(node(u,i));
solve(n,1);
for (ri i(1);i<=q;p(i)) printf("%d\n",ans[i]);
return 0;
}
}
int main() {return nanfeng::main();}