NOIP 模拟 $33\; \rm Hunter$
题解 \(by\;zj\varphi\)
结论题。
对于 \(1\) 猎人,他死的期望就是有多少个死在它前面。
那么对于一个猎人,它死在 \(1\) 前的概率就是 \(\frac{w_i}{w_i+w_1}\),证明简单。
Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
struct nanfeng_stream{
template<typename T>inline nanfeng_stream &operator>>(T &x) {
ri f=0;x=0;register char ch=gc();
while(!isdigit(ch)) {f|=ch=='-';ch=gc();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
return x=f?-x:x,*this;
}
}cin;
}
using IO::cin;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef long long ll;
static const int N=1e5+7,MOD=998244353;
int w[N],ans,n;
inline int fpow(int x,int y) {
int res=1;
while(y) {
if (y&1) res=(ll)res*x%MOD;
x=(ll)x*x%MOD;
y>>=1;
}
return res;
}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
cin >> n >> w[1];
for (ri i(2);i<=n;p(i)) {
cin >> w[i];
ans=(ans+(ll)w[i]*fpow(w[i]+w[1]%MOD,MOD-2)%MOD)%MOD;
}
printf("%lld\n",ans+1);
return 0;
}
}
int main() {return nanfeng::main();}