NOIP 模拟 $20\; \rm y$
题解 \(by\;zj\varphi\)
首先发现一共最多只有 \(2^d\) 种道路,那么可以状压,(不要 \(dfs\),会搜索过多无用的状态)
那么设 \(f_{i,j,k}\) 为走 \(i\) 步,走到 \(j\),状态为 \(k\) 是否可行,那么转移就是 \(\mathcal O\rm (n^22^n)\),过不了
有一种技巧,叫 \(\rm meet\;in\;the\;middle\),从中间折半,设 \(f_{i,j,k}\) 表示由 \(1\) 出发,走 \(i\) 步到 \(j\),状态为 \(k\) 是否可行
\(g_{i,j,k}\) 表示以任意一个点为起点,其余同上
那么最终只要将两种状态拼起来即可,复杂度是 \(\mathcal O\rm (n^2*2^\frac{n}{2}+2^n)\)
注意,需要判断奇数折半的情况
Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define pb(x) push_back(x)
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
static const int N=92;
bitset<1<<11> bit[12][N],bt[N];
bitset<2> eg[N][N];
int first[N],vis[1<<21],n,m,d,t=1,hd,ans;
struct edge{int v,nxt,c;}e[N*N<<1];
vector<int> sta[N],st2[N];
inline void add(int u,int v,int c) {
e[t].v=v,e[t].c=c,e[t].nxt=first[u],first[u]=t++;
e[t].v=u,e[t].c=c,e[t].nxt=first[v],first[v]=t++;
}
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
read(n),read(m),read(d);
hd=d>>1;
for (ri i(1),u,v,c;i<=m;p(i)) {
read(u),read(v),read(c);
if (eg[u][v][c]) continue;
eg[u][v][c]=eg[v][u][c]=1;
add(u,v,c);
}
bit[0][1][0]=1;
for (ri i(0);i<hd;p(i)) {
int S=(1<<i)-1;
for (ri j(0);j<=S;p(j))
for (ri k(1);k<=n;p(k)) {
if (!bit[i][k][j]) continue;
for (ri ed(first[k]);ed;ed=e[ed].nxt) {
ri cst=j<<1|e[ed].c;
bit[i+1][e[ed].v][cst]=1;
if (i+1==hd&&!bt[e[ed].v][cst])
sta[e[ed].v].pb(cst),bt[e[ed].v][cst]=1;
}
}
}
for (ri i(0);i<=11;p(i))
for (ri j(0);j<N;p(j)) bit[i][j].reset();
for (ri i(1);i<=N;p(i)) bt[i].reset();
if (d&1) p(hd);
for (ri i(1);i<=n;p(i)) bit[0][i][0]=1;
for (ri i(0);i<hd;p(i)) {
int S=(1<<i)-1;
for (ri j(0);j<=S;p(j))
for (ri k(1);k<=n;p(k)) {
if (!bit[i][k][j]) continue;
for (ri ed(first[k]);ed;ed=e[ed].nxt) {
ri cst=j<<1|e[ed].c;
bit[i+1][e[ed].v][cst]=1;
if (i+1==hd&&!bt[e[ed].v][cst])
st2[e[ed].v].pb(cst),bt[e[ed].v][cst]=1;
}
}
}
for (ri i(1);i<=n;p(i)) {
ri siz=sta[i].size(),sz=st2[i].size();
for (ri j(0);j<siz;p(j)) {
ri tst=sta[i][j]<<hd;
for (ri k(0);k<sz;p(k)) {
ri stt=tst|st2[i][k];
if (!vis[stt]) p(ans),vis[stt]=1;
if (ans==(1<<d)) break;
}
if (ans==(1<<d)) break;
}
if (ans==(1<<d)) break;
}
printf("%d\n",ans);
return 0;
}
}
int main() {return nanfeng::main();}