Loading

NOIP 模拟 9 数颜色

题解

一道裸的数据结构题

正解是排序 \(+\) 二分,但是这怎么能有动态开点线段树好写呢?

于是我就打了暴力,骗了五十分。

对于每种颜色,我们在下标上开一颗线段树,对于交换若颜色相同则跳过,否则直接修改两种颜色的线段树。

跟正解一样是 \(\mathcal O(nlogn)\),但常数巨大,慢三倍还多

Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
    char buf[1<<21],*p1=buf,*p2=buf;
    #define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
    inline int read() {
        ri x=0,f=1;char ch=gc();
        while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
        while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
        return x*f;
    }
}
using IO::read;
namespace nanfeng{
    #define cmax(x,y) ((x)>(y)?(x):(y))
    #define cmin(x,y) ((x)>(y)?(y):(x))
    #define FI FILE *IN
    #define FO FILE *OUT
    static const int N=3e5+7;
    int a[N],n,m;
    struct Seg{
        #define ls(x) T[x].l
        #define rs(x) T[x].r
        #define sum(x) T[x].sum
        struct Segmenttree{int l,r,sum;}T[N<<5];
        int rt[N],tot;
        inline void up(int x) {
            int l=ls(x),r=rs(x);
            sum(x)=sum(l)+sum(r);
        }
        void update(int &x,int l,int r,int p,int w) {
            if (!x) x=p(tot);
            if (l==r) {sum(x)+=w;return;}
            int mid((l+r)>>1);
            if (p<=mid) update(ls(x),l,mid,p,w);
            else update(rs(x),mid+1,r,p,w);
            up(x);
        }
        int query(int x,int l,int r,int lt,int rt) {
            if (!x) return 0;
            if (l<=lt&&rt<=r) return sum(x);
            int mid((lt+rt)>>1),res=0;
            if (l<=mid) res+=query(ls(x),l,r,lt,mid);
            if (r>mid) res+=query(rs(x),l,r,mid+1,rt);
            return res;
        }
    }T;
    inline int main() {
        // FI=freopen("nanfeng.in","r",stdin);
        // FO=freopen("nanfeng.out","w",stdout);
        n=read(),m=read();
        for (ri i(1);i<=n;p(i)) {
            int c=read();a[i]=c;
            T.update(T.rt[c],1,n,i,1);
        }
        for (ri i(1);i<=m;p(i)) {
            int t=read();
            if (t==1) {
                int l=read(),r=read(),c=read();
                printf("%d\n",T.query(T.rt[c],l,r,1,n));
            } else {
                int x=read();
                if (a[x]==a[x+1]) continue;
                T.update(T.rt[a[x]],1,n,x,-1);
                T.update(T.rt[a[x]],1,n,x+1,1);
                T.update(T.rt[a[x+1]],1,n,x+1,-1);
                T.update(T.rt[a[x+1]],1,n,x,1);
                swap(a[x],a[x+1]);
            }
        }
        return 0;
    }
}
int main() {return nanfeng::main();}
posted @ 2021-06-22 16:06  ナンカエデ  阅读(52)  评论(0编辑  收藏  举报