Codevs 1172 Hankson 的趣味题 2009年NOIP全国联赛提高组

1172 Hankson 的趣味题 2009年NOIP全国联赛提高组
时间限制: 1 s
空间限制: 128000 KB
题目等级 : 黄金 Gold
题目描述 Description
Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson。现
在,刚刚放学回家的Hankson 正在思考一个有趣的问题。
今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数。现
在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公
倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数a0,a1,b0,b1,设某未知正整
数x 满足:
1. x 和a0 的最大公约数是a1;
2. x 和b0 的最小公倍数是b1。
Hankson 的“逆问题”就是求出满足条件的正整数x。但稍加思索之后,他发现这样的
x 并不唯一,甚至可能不存在。因此他转而开始考虑如何求解满足条件的x 的个数。请你帮
助他编程求解这个问题。
输入描述 Input Description
第一行为一个正整数n,表示有n 组输入数据。接下来的n 行每
行一组输入数据,为四个正整数a0,a1,b0,b1,每两个整数之间用一个空格隔开。输入
数据保证a0 能被a1 整除,b1 能被b0 整除。
输出描述 Output Description
每组输入数据的输出结果占一行,为一个整数。
对于每组数据:若不存在这样的 x,请输出0;
若存在这样的 x,请输出满足条件的x 的个数;
样例输入 Sample Input
2
41 1 96 288
95 1 37 1776
样例输出 Sample Output
6
2
数据范围及提示 Data Size & Hint
【说明】
第一组输入数据,x 可以是9、18、36、72、144、288,共有6 个。
第二组输入数据,x 可以是48、1776,共有2 个。
【数据范围】
对于 50%的数据,保证有1≤a0,a1,b0,b1≤10000 且n≤100。
对于 100%的数据,保证有1≤a0,a1,b0,b1≤2,000,000,000 且n≤2000。
分类标签 Tags
大陆地区 NOIP全国联赛提高组 2009年

/*
可证得x为b1的约数.
然后gcd.
枚举约数枚举到sqrt(n)即可(数学定理).
一开始竟然推出了个ax+by=0的式子.
然后要枚举x y就傻眼了QWQ. 
*/
#include<iostream>
#include<cstdio>
#include<cmath>
#define MAXN 1001
#define LL long long
using namespace std;
LL tot;
int a0,a1,b0,b1;
int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9')x=x*10+ch-48,ch=getchar();
    return x*f;
}
LL gcd(LL a,LL b){
    if(!b) return a;return gcd(b,a%b);
}
bool jd(int x){
    if(x%a1) return 0;
    return gcd(x/a1,a0/a1)==1&&gcd(b1/x,b1/b0)==1;
}
void slove(){
    a0=read(),a1=read(),b0=read(),b1=read();tot=0;
    for(int i=1;i*i<=b1;i++){
        if(!(b1%i)){
          tot+=jd(i);
        if(b1/i!=i)
          tot+=jd(b1/i);
        }
    }
    printf("%lld\n",tot);
}
int main(){
    int t;t=read();
    while(t--){
        slove();
    }
    return 0;
}
posted @ 2016-07-28 21:51  nancheng58  阅读(113)  评论(0编辑  收藏  举报