点云配准算法-旋转矩阵估计-Kabsch-Umeyama algorithm

Kabsch-Umeyama algorithm

参考文献:

  1. https://www.wikiwand.com/en/Kabsch_algorithm

面向点云配准,最小化两点集均方根误差(RMSD, root mean squared deviation)来计算最佳旋转矩阵。

注:该算法只能计算旋转矩阵,做点云配准还需要计算平移向量。当平移和旋转都正确计算出,该算法有时也叫_partial Procrustes superimposition (see also orthogonal Procrustes problem)_

步骤:

  1. a translation
  2. the computation of a covariance matrix
  3. the computation of the optimal rotation matrix

First Step: Translation

将两组点集的质心对齐坐标系原点:

\[\hat{P} = || P - P_{centroid} ||_1 \]

Second Step: calculate the covariance matrix

calculate the corrs-covariance matrix \(H\) between \(P\) and \(Q\)

\[H = P^TQ \]

Third Step: calculate the optimal rotation matrix

base calculating formula:

\[R=(H^TH)^{\frac{1}{2}}H^{-1} \]

但是如果出现一些特殊情况,例如:\(H\) 不存在逆矩阵时,上述公式变得复杂,甚至不可解。所以一般都会使用SVD(奇异值分解,singular value decomposition)变换上述公式。

\[SVD: H=U\Sigma V^T \]

并且校正旋转矩阵确保在一个右手坐标系,最终计算最佳旋转矩阵\(R\)

\[d = sign(det(VU^T)) \]

\[R = V \begin{pmatrix} 1&0&0\\0&1&0\\0&0&d\end{pmatrix}U^T \]

最佳旋转矩阵还可以用四元数(quaternions来表示)

Generalizations

The algorithm was described for points in a three-dimensional space. The generalization to D dimensions is immediate.

posted @ 2023-10-02 12:43  name555difficult  阅读(243)  评论(0编辑  收藏  举报