[课堂笔记][pytorch学习][3]语言模型

第三节课笔记:

#注:随堂笔记中使用的torchtext已经更新,部分代码不能使用,请对照官方README使用 torchtext

创建vocabulary

import torchtext
from torchtext.vocab import Vectors
import torch
import numpy as np
import random

USE_CUDA = torch.cuda.is_available()

# 为了保证实验结果可以复现,我们经常会把各种random seed固定在某一个值
random.seed(53113)
np.random.seed(53113)
torch.manual_seed(53113)
if USE_CUDA:
    torch.cuda.manual_seed(53113)

BATCH_SIZE = 32
EMBEDDING_SIZE = 650
MAX_VOCAB_SIZE = 50000
  • torchtext提供了LanguageModelingDataset这个class来帮助我们处理语言模型数据集
  • BPTTIterator可以连续地得到连贯的句子
TEXT = torchtext.data.Field(lower=True)
train, val, test = torchtext.datasets.LanguageModelingDataset.splits(path=".", 
    train="text8.train.txt", validation="text8.dev.txt", test="text8.test.txt", text_field=TEXT)
TEXT.build_vocab(train, max_size=MAX_VOCAB_SIZE)
print("vocabulary size: {}".format(len(TEXT.vocab)))

VOCAB_SIZE = len(TEXT.vocab)
train_iter, val_iter, test_iter = torchtext.data.BPTTIterator.splits(
    (train, val, test), batch_size=BATCH_SIZE, device=-1, bptt_len=32, repeat=False, shuffle=True)

模型的输入是一串文字,模型的输出也是一串文字,他们之间相差一个位置,因为语言模型的目标是根据之前的单词预测下一个单词。

定义模型

import torch
import torch.nn as nn


class RNNModel(nn.Module):
    """ 一个简单的循环神经网络"""

    def __init__(self, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5):
        ''' 该模型包含以下几层:
            - 词嵌入层
            - 一个循环神经网络层(RNN, LSTM, GRU)
            - 一个线性层,从hidden state到输出单词表
            - 一个dropout层,用来做regularization
        '''
        super(RNNModel, self).__init__()
        self.drop = nn.Dropout(dropout)
        self.encoder = nn.Embedding(ntoken, ninp)
        if rnn_type in ['LSTM', 'GRU']:
            self.rnn = getattr(nn, rnn_type)(ninp, nhid, nlayers, dropout=dropout)
        else:
            try:
                nonlinearity = {'RNN_TANH': 'tanh', 'RNN_RELU': 'relu'}[rnn_type]
            except KeyError:
                raise ValueError( """An invalid option for `--model` was supplied,
                                 options are ['LSTM', 'GRU', 'RNN_TANH' or 'RNN_RELU']""")
            self.rnn = nn.RNN(ninp, nhid, nlayers, nonlinearity=nonlinearity, dropout=dropout)
        self.decoder = nn.Linear(nhid, ntoken)

        self.init_weights()

        self.rnn_type = rnn_type
        self.nhid = nhid
        self.nlayers = nlayers

    def init_weights(self):
        initrange = 0.1
        self.encoder.weight.data.uniform_(-initrange, initrange)
        self.decoder.bias.data.zero_()
        self.decoder.weight.data.uniform_(-initrange, initrange)

    def forward(self, input, hidden):
        ''' Forward pass:
            - word embedding
            - 输入循环神经网络
            - 一个线性层从hidden state转化为输出单词表
        '''
        emb = self.drop(self.encoder(input))
        output, hidden = self.rnn(emb, hidden)
        output = self.drop(output)
        decoded = self.decoder(output.view(output.size(0)*output.size(1), output.size(2)))
        return decoded.view(output.size(0), output.size(1), decoded.size(1)), hidden

    def init_hidden(self, bsz, requires_grad=True):
        weight = next(self.parameters())
        if self.rnn_type == 'LSTM':
            return (weight.new_zeros((self.nlayers, bsz, self.nhid), requires_grad=requires_grad),
                    weight.new_zeros((self.nlayers, bsz, self.nhid), requires_grad=requires_grad))
        else:
            return weight.new_zeros((self.nlayers, bsz, self.nhid), requires_grad=requires_grad)

初始化模型

model = RNNModel("LSTM", VOCAB_SIZE, EMBEDDING_SIZE, EMBEDDING_SIZE, 2, dropout=0.5)
if USE_CUDA:
    model = model.cuda()
  • 我们首先定义评估模型的代码。
  • 模型的评估和模型的训练逻辑基本相同,唯一的区别是我们只需要forward pass,不需要backward pass
    def evaluate(model, data):
        model.eval()
        total_loss = 0.
        it = iter(data)
        total_count = 0.
        with torch.no_grad():
            hidden = model.init_hidden(BATCH_SIZE, requires_grad=False)
            for i, batch in enumerate(it):
                data, target = batch.text, batch.target
                if USE_CUDA:
                    data, target = data.cuda(), target.cuda()
                hidden = repackage_hidden(hidden)
                with torch.no_grad():
                    output, hidden = model(data, hidden)
                loss = loss_fn(output.view(-1, VOCAB_SIZE), target.view(-1))
                total_count += np.multiply(*data.size())
                total_loss += loss.item()*np.multiply(*data.size())
                
        loss = total_loss / total_count
        model.train()
        return loss

    我们需要定义下面的一个function,帮助我们把一个hidden state和计算图之前的历史分离。

    def repackage_hidden(h):
        if isinstance(h, torch.Tensor):
            return h.detach()
        else:
            return tuple(repackage_hidden(v) for v in h)

     

posted @ 2021-07-08 20:30  Nakkk  阅读(92)  评论(0编辑  收藏  举报