K-means是一种经典的聚类算法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。
假设要把样本集分为c个类别,算法描述如下:
(1)适当选择c个类的初始中心;
(2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类;
(3)利用均值等方法更新该类的中心值;
(4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。
该算法的最大优势在于简洁和快速。算法的关键在于初始中心的选择和距离公式。
K-means算法的应用之一就是图像的压缩。假设有一张1600*2400大小的RGB图,那么需要1600*2400*3字节的空间来存放每个像素的三个通道值。如果这是一张颜色单调的图片,我们就可以把颜色相近的像素点归类,用同一组RGB值来表示他们,把这组RGB值放入调色板的x位置,原图片中属于这一聚类的像素点只需要保存x值,然后根据x值到调色板查找RGB值。如果把一张图片的所有颜色聚成256个类,那么只需要1600*2400*1个字节来保存每个像素的调色板索引值,和256*3个字节保存调色板。尽管这一过程会使照片的色彩略有失真,但是它可以大大节省存储空间。
下面是k-means算法的Matlab代码。图片的像素按照RGB值被归为10个聚类,分别是原图像和聚类后的图像。如果增加聚类的个数,图像的效果会有所改善。
K-Means主要有两个最重大的缺陷——都和初始值有关:
K 是事先给定的,这个 K 值的选定是非常难以估计的。很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。( ISODATA 算法通过类的自动合并和分裂,得到较为合理的类型数目 K)
K-Means算法需要用初始随机种子点来搞,这个随机种子点太重要,不同的随机种子点会有得到完全不同的结果。(K-Means++算法可以用来解决这个问题,其可以有效地选择初始点)
我在这里重点说一下 K-Means++算法步骤:
先从我们的数据库随机挑个随机点当“种子点”。
对于每个点,我们都计算其和最近的一个“种子点”的距离D(x)并保存在一个数组里,然后把这些距离加起来得到Sum(D(x))。
然后,再取一个随机值,用权重的方式来取计算下一个“种子点”。这个算法的实现是,先取一个能落在Sum(D(x))中的随机值Random,然后用Random -= D(x),直到其<=0,此时的点就是下一个“种子点”。
重复第(2)和第(3)步直到所有的K个种子点都被选出来。
进行K-Means算法。
相关的代码你可以在这里找到“implement the K-means++ algorithm”(墙) 另,Apache 的通用数据学库也实现了这一算法