MapReduce的shuffle阶段
1、shuffle概念:
map阶段处理的数据如何传递给reduce阶段,是MapReduce框架中最关键的一个流程,这个流程就叫shuffle。
2、shuffle过程:
shuffle: 洗牌、发牌——(核心机制:数据分区,排序,分组,规约,合并等过程)。
3、shuffle理解:
shuffle是Mapreduce的核心,它分布在Mapreduce的map阶段和reduce阶段。一般把从Map产生输出开始到Reduce取得数据作为输入之前的过程称作shuffle。
1).Collect阶段:将MapTask的结果输出到默认大小为100M的环形缓冲区,保存的是key/value,Partition分区信息等。
2).Spill阶段:当内存中的数据量达到一定的阀值的时候,就会将数据写入本地磁盘,在将数据写入磁盘之前需要对数据进行一次排序的操作,如果配置了combiner,还会将有相同分区号和key的数据进行排序。
3).Merge阶段:把所有溢出的临时文件进行一次合并操作,以确保一个MapTask最终只产生一个中间数据文件。
4).Copy阶段:ReduceTask启动Fetcher线程到已经完成MapTask的节点上复制一份属于自己的数据,这些数据默认会保存在内存的缓冲区中,当内存的缓冲区达到一定的阀值的时候,就会将数据写到磁盘之上。
5).Merge阶段:在ReduceTask远程复制数据的同时,会在后台开启两个线程对内存到本地的数据文件进行合并操作。
6).Sort阶段:在对数据进行合并的同时,会进行排序操作,由于MapTask阶段已经对数据进行了局部的排序,ReduceTask只需保证Copy的数据的最终整体有效性即可。
Shuffle中的缓冲区大小会影响到mapreduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快
缓冲区的大小可以通过参数调整, 参数:mapreduce.task.io.sort.mb 默认100M