八数码问题(8-Puzzle Problem)——多种搜索算法

八数码问题(8-Puzzle Problem)——多种搜索算法

P1379 八数码难题 - 洛谷

题目概述

\(3 \times 3\) 的棋盘上摆放着 \(8\) 个棋子,棋子的编号分别为 \(1\)\(8\),空格则用 \(0\) 表示。与空格直接相连的棋子可以移至空格中,这样原来棋子的位置就成为空格。现给出一种初始布局,求到达目标布局的最少步数。为简单起见,目标布局总是如下:

123
804
765

本题是一道经典的搜索题,下面将介绍几种常见的搜索算法。以下所有代码均需要 C++11 标准。

朴素 BFS

通过对题目的简单分析,很容易写出朴素的 BFS 代码。进行访问标记时,可以利用哈希的思想,将矩阵转化为整数,再用 std::unordered_set 存储。由于本题的数据范围较小,朴素的 BFS 算法也能通过本题测试,但是效率较低。具体代码如下:

View Code
#include <bits/stdc++.h>

using namespace std;
const int tar_x = 2, tar_y = 2, target = 123804765;
const int dx[] = { 1, -1, 0, 0 };
const int dy[] = { 0, 0, 1, -1 };

struct Status {
    int maze[5][5];  // matrix
    int x, y;        // coordinate of blank space
    int t;           // step number

    explicit Status(int num) {
        memset(maze, 0, sizeof(maze));
        t = 0;
        for (int i = 3; i >= 1; --i) {
            for (int j = 3; j >= 1; --j) {
                maze[i][j] = num % 10;
                num /= 10;
                if (maze[i][j] == 0)
                    x = i, y = j;
            }
        }
    }

    int to_int() const {
        int ans = 0;
        for (int i = 1; i <= 3; ++i)
            for (int j = 1; j <= 3; ++j)
                ans = ans * 10 + maze[i][j];  // hash
        return ans;
    }
};

int bfs(int num) {
    queue<Status> q;
    unordered_set<int> vis;
    q.emplace(num);
    vis.insert(num);
    while (!q.empty()) {
        Status now = q.front();
        q.pop();
        if (now.x == tar_x && now.y == tar_y && now.to_int() == target)
            return now.t;  // exit
        ++now.t;
        int x = now.x, y = now.y;
        for (int i = 0; i < 4; ++i) {
            int tx = x + dx[i], ty = y + dy[i];
            if (tx < 1 || tx > 3 || ty < 1 || ty > 3)
                continue;
            swap(now.maze[x][y], now.maze[tx][ty]);
            now.x = tx;
            now.y = ty;
            if (!vis.count(now.to_int())) {
                q.push(now);  // expand
                vis.insert(now.to_int());
            }
            now.x = x;
            now.y = y;
            swap(now.maze[x][y], now.maze[tx][ty]);  // backtrack
        }
    }
    return -1;  // unused value
}

int main() {
    int num;
    cin >> num;
    cout << bfs(num) << endl;
    return 0;
}

双向 BFS

对于本题这类已知初始状态和目标状态的题目,可以考虑双向 BFS。在搜索开始前,同时将初始状态和目标状态放进 BFS 队列中。搜索过程中,标记每个状态被访问时的搜索方向以及从对应起点出发的步数。当一种状态被两个方向同时搜到,也就是两个方向相遇时,这两个方向的步数之和就是所求答案。BFS 的性质保证了这一答案一定是最小值。这样的算法称为 Meet in the Middle,通过将实际拓展的层数减半,大大提高了搜索效率,避免了许多不必要的状态拓展。具体代码如下:

View Code
#include <bits/stdc++.h>

using namespace std;
const int target = 123804765;
const int dx[] = { 1, -1, 0, 0 };
const int dy[] = { 0, 0, 1, -1 };

struct Status {
    int maze[5][5];  // matrix
    int x, y;        // coordinate of blank space
    bool d;          // bfs direction (true: forward, false: back)
    int t;           // step number

    explicit Status(int num) {
        memset(maze, 0, sizeof(maze));
        t = 0;
        if (num == target)
            d = false;
        else
            d = true;
        for (int i = 3; i >= 1; --i) {
            for (int j = 3; j >= 1; --j) {
                maze[i][j] = num % 10;
                num /= 10;
                if (maze[i][j] == 0)
                    x = i, y = j;
            }
        }
    }

    int to_int() const {
        int ans = 0;
        for (int i = 1; i <= 3; ++i)
            for (int j = 1; j <= 3; ++j)
                ans = ans * 10 + maze[i][j];  // hash
        return ans;
    }
};

int bfs(int num) {
    queue<Status> q;
    unordered_map<int, pair<int, bool>> vis;
    q.emplace(target);  // target state
    vis[target] = make_pair(0, false);
    q.emplace(num);  // starting state
    vis[num] = make_pair(0, true);
    while (!q.empty()) {
        Status now = q.front();
        q.pop();
        if (vis.count(now.to_int()) && vis[now.to_int()].second != now.d)
            return now.t + vis[now.to_int()].first;  // meet in the middle
        ++now.t;
        int x = now.x, y = now.y;
        for (int i = 0; i < 4; ++i) {
            int tx = x + dx[i], ty = y + dy[i];
            if (tx < 1 || tx > 3 || ty < 1 || ty > 3)
                continue;
            swap(now.maze[x][y], now.maze[tx][ty]);
            now.x = tx;
            now.y = ty;
            if (!vis.count(now.to_int()) || vis[now.to_int()].second != now.d) {
                q.push(now);  // expand
                vis[now.to_int()] = make_pair(now.t, now.d);
            }
            now.x = x;
            now.y = y;
            swap(now.maze[now.x][now.y], now.maze[tx][ty]);  // backtrack
        }
    }
    return -1;  // unused value
}

int main() {
    int num;
    cin >> num;
    cout << bfs(num) << endl;
    return 0;
}

A*

A* 算法是一种启发式搜索,即利用估值函数进行剪枝,以避免盲目搜索中许多不必要的状态拓展。A* 算法以 BFS 为基础,用优先队列代替 BFS 队列,以估值函数为优先级。A* 算法中,每个状态的估值函数由两部分组成,即 \(f(x)=g(x)+h(x)\),其中 \(g(x)\) 是已经走过的步数,\(h(x)\) 是预估到达终点至少还要走的步数,两者之和 \(f(x)\) 即这一状态的估值函数。因此,为确保算法正确,\(h(x)\) 的值一定不大于实际距离终点的步数,即 \(f(x)\) 的值一定不大于实际总步数。本题中,可以使用每个棋子到目标位置的曼哈顿距离作为其 \(h(x)\)。容易证明,该函数满足上述条件。具体代码如下:

View Code
#include <bits/stdc++.h>

using namespace std;
const int dx[] = { 1, -1, 0, 0 };
const int dy[] = { 0, 0, 1, -1 };
const int pos_x[] = { 2, 1, 1, 1, 2, 3, 3, 3, 2 };
const int pos_y[] = { 2, 1, 2, 3, 3, 3, 2, 1, 1 };

struct Status {
    int maze[5][5];  // matrix
    int x, y;        // coordinate of blank space
    int t;           // step number

    explicit Status(int num) {
        memset(maze, 0, sizeof(maze));
        t = 0;
        for (int i = 3; i >= 1; --i) {
            for (int j = 3; j >= 1; --j) {
                maze[i][j] = num % 10;
                num /= 10;
                if (maze[i][j] == 0)
                    x = i, y = j;
            }
        }
    }

    int h() const {
        int ans = 0;
        for (int i = 1; i <= 3; ++i)
            for (int j = 1; j <= 3; ++j)
                if (maze[i][j] != 0)
                    ans += abs(i - pos_x[maze[i][j]]) + abs(j - pos_y[maze[i][j]]);  // Manhattan distance
        return ans;
    }

    int to_int() const {
        int ans = 0;
        for (int i = 1; i <= 3; ++i)
            for (int j = 1; j <= 3; ++j)
                ans = ans * 10 + maze[i][j];  // hash
        return ans;
    }

    bool operator<(const Status& other) const {
        return h() + t > other.h() + other.t;  // compare by f(x)
    }
};

int a_star(int num) {
    priority_queue<Status, vector<Status>> pq;
    set<int> vis;
    pq.push(Status(num));
    vis.insert(num);
    while (!pq.empty()) {
        if (pq.top().h() == 0)
            return pq.top().t;  // exit
        Status now = pq.top();
        pq.pop();
        ++now.t;
        int x = now.x, y = now.y;
        for (int i = 0; i < 4; ++i) {
            int tx = x + dx[i], ty = y + dy[i];
            if (tx < 1 || tx > 3 || ty < 1 || ty > 3)
                continue;
            swap(now.maze[now.x][now.y], now.maze[tx][ty]);
            now.x = tx;
            now.y = ty;
            if (!vis.count(now.to_int())) {
                pq.push(now);  // expand
                vis.insert(now.to_int());
            }
            now.x = x;
            now.y = y;
            swap(now.maze[now.x][now.y], now.maze[tx][ty]);  // backtrack
        }
    }
    return -1;  // unused value
}

int main() {
    int num;
    cin >> num;
    cout << a_star(num) << endl;
    return 0;
}

IDA*

IDA* 就是基于迭代加深搜索的 A* 算法。所谓迭代加深,就是在 DFS 的基础上控制其搜索深度,一旦超过深度限制就停止搜索,若当前深度无法得到答案,则再增加深度限制。迭代加深搜索结合了 DFS 与 BFS 的优点,不需要占用大量空间,支持回溯,同时可以快速找到最优解,避免剪枝不充分而造成的大量无用搜素,并且不需要判重。此外,由于迭代加深算法基于 DFS,相对于 BFS 而言,其实现难度更低,代码量更少。IDA* 则是在迭代加深搜素的基础上加上了估值函数的剪枝。有关估值函数的内容,在 A* 部分 已经说明,此处不再赘述。具体代码如下:

View Code
#include <bits/stdc++.h>

using namespace std;
const int dx[] = { 1, -1, 0, 0 };
const int dy[] = { 0, 0, 1, -1 };
const int pos_x[] = { 2, 1, 1, 1, 2, 3, 3, 3, 2 };
const int pos_y[] = { 2, 1, 2, 3, 3, 3, 2, 1, 1 };
int lim;  // depth limit
int m[5][5];

int h() {
    int ans = 0;
    for (int i = 1; i <= 3; ++i)
        for (int j = 1; j <= 3; ++j)
            if (m[i][j] != 0)
                ans += abs(i - pos_x[m[i][j]]) + abs(j - pos_y[m[i][j]]);  // Manhattan distance
    return ans;
}

bool dfs(int x, int y, int t, int lx, int ly) {
    int dis = h();
    if (t + dis > lim)
        return false;  // prune with f(x)
    if (dis == 0)
        return true;  // exit
    for (int i = 0; i < 4; ++i) {
        int tx = x + dx[i], ty = y + dy[i];
        if (tx < 1 || tx > 3 || ty < 1 || ty > 3)
            continue;
        if (tx == lx && ty == ly)
            continue;  // very important
        swap(m[x][y], m[tx][ty]);
        if (dfs(tx, ty, t + 1, x, y))
            return true;  // expand
        swap(m[x][y], m[tx][ty]);  // backtrack
    }
    return false;
}

int main() {
    int num;
    cin >> num;
    int sx, sy;
    for (int i = 3; i >= 1; --i) {
        for (int j = 3; j >= 1; --j) {
            m[i][j] = num % 10;
            num /= 10;
            if (m[i][j] == 0)
                sx = i, sy = j;
        }
    }
    lim = 0;
    while (!dfs(sx, sy, 0, -1, -1))
        ++lim;  // IDA*
    cout << lim << endl;
    return 0;
}

转载请注明出处。原文地址:https://www.cnblogs.com/na-sr/p/8-puzzle.html

posted @ 2022-01-15 23:59  Na/Sr  阅读(1428)  评论(0编辑  收藏  举报