python画连续变量柱状图

弗里德曼-迪亚科尼斯规则

在统计学中,Freedman-Diaconis规则用于确定直方图中的条柱宽度, 它以David A.Freedman和Persi Diaconis的名字命名。该规则定义:

=2×IQRn3

其中,IQR是四分位距,n是观测样本数目。

import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt

plt.rcParams["font.sans-serif"] = ["SimHei"]

# 1. 导入数据
file_path = r"../../机器学习数据/data_train.csv"
df = pd.read_csv(file_path, encoding='gbk')

# 2. 查看数据
# print(df.head())
# print(df.columns)
# print(df.info)
# print(df.isnull().sum())  # 检查空值
std = df["房价"].describe()


def freedman_diaconis(x):
    """
    :param x: 输入数据
    :return num_bin: 条柱数目
    """
    static = x.describe()
    IQR = static["75%"] - static["25%"]
    bin_width = (2 * IQR) / np.power(x.shape[0], 1 / 3)
    x_max, x_min = static["max"], static["min"]
    num_bin = int(((x_max - x_min) / bin_width) + 1)
    return num_bin


bins = freedman_diaconis(df["房价"])  # 箱子数目

plt.figure()
plt.hist(df["房价"], bins=bins, edgecolor="black", linewidth=0.5, alpha=0.9)
plt.title("房价分布")
plt.xlabel("房价")
plt.ylabel("Count")
plt.legend({"频数"})
sns.displot(df["房价"])
plt.show()

模仿:
image
sns.displot():
image

posted @   编码雪人  阅读(685)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 周边上新:园子的第一款马克杯温暖上架
· 分享 3 个 .NET 开源的文件压缩处理库,助力快速实现文件压缩解压功能!
· Ollama——大语言模型本地部署的极速利器
· DeepSeek如何颠覆传统软件测试?测试工程师会被淘汰吗?
· 使用C#创建一个MCP客户端
点击右上角即可分享
微信分享提示