萤火虫算法

1. 萤火虫优化算法背景

image
受萤火虫发光强度的启发,2008年,英国剑桥大学学者Xin-She Yang提出萤火虫算法(Firefly Algorithm, FA)。自然界中,萤火虫可以发出短促、有节奏的闪光。通常这种闪光仅在一定范围内可见。萤火虫通过闪光可以吸引异性和猎取食物。为了使算法更加简单,该算法只考虑了萤火虫强度的变化和吸引力这两个因素。

2. 萤火虫优化算法理想化数学模型

依照萤火虫发光的特性,给出以下理想化规则:
(1) 萤火虫不分雌雄,每个萤火虫都会被比它发光更亮的萤火虫吸引;
(2) 吸引力与发光强度成正比;
(3) 萤火虫的亮度由目标函数值决定。

3. 萤火虫优化算法的更新过程

3.1 绝对亮度的定义

为了表示萤火虫\(i\)的亮度随距离\(r\)的变化,定义如下绝对亮度:
萤火虫\(i\)绝对亮度为距离\(r=0\)时的亮度,记为\(I_i\).
注意:为了降低算法的复杂度,假定萤火虫\(i\)的绝对亮度\(I_i\)\(x_i\)的目标函数值相等。

3.2 相对亮度的定义

为了表示萤火虫\(i\)对萤火虫\(j\)的吸引大小,定义如下相对亮度:
萤火虫\(i\)在萤火虫\(j\)位置的光强度,记为\(I_{ij}\)

\[I_{ij}(r_{ij}) = I_ie^{-\gamma{r_{ij}^2}} \]

其中,\(\gamma\)为光吸收系数,\(r_{ij}\)为萤火虫\(i\)到萤火虫\(j\)的距离.

3.3 吸引力的定义

假设萤火虫\(i\)对萤火虫\(j\)的吸引力和萤火虫\(i\)对萤火虫\(j\)的相对亮度成比例,所以萤火虫\(i\)对萤火虫\(j\)的吸引力可表示为:

\[\beta_{ij}(r_{ij}) = \beta_0e^{-\gamma{r_{ij}^2}} \]

其中,\(\beta_0\)为最大吸引力,当距离\(r=0\)时,吸引力最大。通常\(\beta_0=1\),\(\gamma\in{[0.01,100]}\).

3.4 萤火虫位置更新公式

萤火虫\(i\)吸引着萤火虫\(j\),因此萤火虫\(j\)的位置更新公式:

\[x_j(t+1) = x_j(t) + \beta_{ij}(r_{ij})(x_i(t) - x_j(t)) + \alpha\varepsilon_j \]

其中,\(t\)为算法的迭代次数;\(x_i\)\(x_j\)分别为萤火虫\(i\)和萤火虫\(j\)所处的空间位置;\(\alpha\in{[0,1]}\), \(\varepsilon\)是高斯分布得到的随机向量。
第一版本:

% =========================================================================
%     Coder: Lee WenTsao
%      Time: 2022-05-14
%     Email: liwenchao36@163.com
% Reference: Xin-She Yang, Nature-Inspired Metaheuristic Algorithms,      
%            Luniver Press, First Edition.
% =========================================================================

%% 清理运行环境
clc
clear 
close all

%% 问题定义
option = 2;                          % 选择优化函数
dimension = 2;                       % 维数
[fobj, bound] = Optimizer(option);
lb = bound(1);                       % 下界
ub = bound(2);                       % 上界

%% 绘制云图
figure(1)
x = linspace(lb, ub, 101);
y = linspace(lb, ub, 101);
z = zeros(101);
for i=1:length(x)
    for j=1:length(y)
        z(i,j) = fobj([x(i), y(j)]);
    end
end

contour(x,y,z);                      % 函数云图显示
hold on;

%% 萤火虫参数设置
num_pop = 30;      % 初始种群数目
Max_gen = 1000;    % 最大迭代次数

beta_0 = 1.0;      % 最大吸引力
gamma = 0.1;       % 光强吸收系数

alpha = 1.0;       % 步长因子
theta = 0.97;      % alpha衰减因子

%% 初始化种群
Sol = zeros(num_pop, dimension);
I = zeros(num_pop, 1);
for i=1:num_pop
    Sol(i,:) = lb + (ub - lb)*rand(1,dimension);  % 初始化种群
    I(i) = fobj(Sol(i,:));                        % 适应度 
end        

[fmin, id] = min(I);
best_scores = [fmin];

%% 动态表示
points = scatter(Sol(:,1),Sol(:,2),"ro","filled");
xlim([lb,ub]);
ylim([lb,ub]);
drawnow;


%% 仿真
for iter=1:Max_gen
    alpha = alpha*theta;
    scale = abs((ub -lb)*ones(1, dimension));   % 优化问题的尺度
    for i=1:num_pop
        for j=1:num_pop
            if I(i)>I(j)
                % 计算萤火虫i和萤火虫j之间的距离
                r = sqrt(sum((Sol(i,:) - Sol(j,:)).^2)); 

                % 计算萤火虫之间的吸引力
                beta = beta_0*exp(-gamma*r.^2);

                % 搜索精度
                steps = alpha.*(rand(1,dimension) - 0.5).*scale;

                % 更新萤火虫的位置
                S = Sol(i,:) + beta*(Sol(j,:) - Sol(i,:)) + steps; 
                
                % 萤火虫越界处理
                Tp = S>ub;
                Tm = S<lb;
                S = S.*(~(Tp+Tm)) + ub.*Tp + lb.*Tm;

                % 适应度值
                new_fun = fobj(S);

                % 进化机制
                if new_fun<I(i)
                    Sol(i,:) = S;
                    I(i) = new_fun;
                end

                % 更新最优
                if I(i)<fmin
                    fmin = I(i);
                    id = i;
                end

            end
        end
    end
    best_scores = [best_scores,fmin];
    
    reset(points);
    points = scatter(Sol(:,1), Sol(:,2), 'ro','filled');
    pause(0.1)

    %% 输出
    if ~mod(iter,50)
        disp(['迭代次数:' num2str(iter) '||   最优值:' num2str(fmin)]);
    end
end

%% 收敛曲线可视化
figure(2)
xx = 1:50:1001;
xxx = 0:50:1000;
plot(xxx,log10(best_scores(xx)),'r','LineWidth',1.5);
hold on;
sz = 40;
scatter(xxx(2:end-1),log10(best_scores(xx(2:end-1))),sz,'ro','filled');
xlabel('$$Iteration$$','Interpreter','latex');
ylabel('$$\log_{10} (fitness)$$','Interpreter','latex');
title('Convergence curve')

xticks(0:50:1000);

杨老师原始版本:

% ---------------------------------------------------------------------- %
% The Firefly Algorithm (FA) for unconstrained function optimization     %
% by Xin-She Yang (Cambridge University) @2008-2009                      %
% Programming dates: 2008-2009, then revised and updated in Oct 2010     %
% ---------------------------------------------------------------------- %

% References -- citation details: -------------------------------------- %
% (1) Xin-She Yang, Nature-Inspired Metaheuristic Algorithms,            %
%     Luniver Press, First Edition, (2008).                              %
% (2) Xin-She Yang, Firefly Algorithm, Stochastic Test Functions and     %
%     Design Optimisation, Int. Journal of Bio-Inspired Computation,     %
%     vol. 2, no. 2, 78-84 (2010).                                       %
% ---------------------------------------------------------------------- %

% -------- Start the Firefly Algorithm (FA) main loop ------------------ % 
function fa_ndim_new 
n=20;                   % Population size (number of fireflies)
alpha=1.0;              % Randomness strength 0--1 (highly random)
beta0=1.0;              % Attractiveness constant
gamma=0.01;             % Absorption coefficient
theta=0.97;             % Randomness reduction factor theta=10^(-5/tMax) 
d=10;                   % Number of dimensions
tMax=500;               % Maximum number of iterations
Lb=-10*ones(1,d);       % Lower bounds/limits
Ub=10*ones(1,d);        % Upper bounds/limits
% Generating the initial locations of n fireflies
for i=1:n,
   ns(i,:)=Lb+(Ub-Lb).*rand(1,d);         % Randomization
   Lightn(i)=cost(ns(i,:));               % Evaluate objectives
end

%%%%%%%%%%%%%%%%% Start the iterations (main loop) %%%%%%%%%%%%%%%%%%%%%%%
for k=1:tMax,        
 alpha=alpha*theta;     % Reduce alpha by a factor theta
 scale=abs(Ub-Lb);      % Scale of the optimization problem
% Two loops over all the n fireflies
for i=1:n,
    for j=1:n,
      % Evaluate the objective values of current solutions
      Lightn(i)=cost(ns(i,:));           % Call the objective
      % Update moves
      if Lightn(i)>=Lightn(j),           % Brighter/more attractive
         r=sqrt(sum((ns(i,:)-ns(j,:)).^2));
         beta=beta0*exp(-gamma*r.^2);    % Attractiveness
         steps=alpha.*(rand(1,d)-0.5).*scale;
      % The FA equation for updating position vectors
         ns(i,:)=ns(i,:)+beta*(ns(j,:)-ns(i,:))+steps;
      end
   end % end for j
end % end for i

% Check if the new solutions/locations are within limits/bounds
ns=findlimits(n,ns,Lb,Ub);
%% Rank fireflies by their light intensity/objectives
[Lightn,Index]=sort(Lightn);
nsol_tmp=ns;
for i=1:n,
 ns(i,:)=nsol_tmp(Index(i),:);
end
%% Find the current best solution and display outputs
fbest=Lightn(1), nbest=ns(1,:)
end % End of the main FA loop (up to tMax) 

% Make sure that new fireflies are within the bounds/limits
function [ns]=findlimits(n,ns,Lb,Ub)
for i=1:n,
  nsol_tmp=ns(i,:);
  % Apply the lower bound
  I=nsol_tmp<Lb;  nsol_tmp(I)=Lb(I);
  % Apply the upper bounds
  J=nsol_tmp>Ub;  nsol_tmp(J)=Ub(J);
  % Update this new move
  ns(i,:)=nsol_tmp;
end

%% Define the objective function or cost function
function z=cost(x)
% The modified sphere function: z=sum_{i=1}^D (x_i-1)^2
z=sum((x-1).^2); % The global minimum fmin=0 at (1,1,...,1)
% -----------------------------------------------------------------------%

image
image

posted @ 2021-06-05 22:50  编码雪人  阅读(1772)  评论(6编辑  收藏  举报