P1879 [USACO06NOV]玉米田Corn Fields

题目描述

Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.

Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways he can choose the squares to plant.

农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地。John打算在牧场上的某几格里种上美味的草,供他的奶牛们享用。

遗憾的是,有些土地相当贫瘠,不能用来种草。并且,奶牛们喜欢独占一块草地的感觉,于是John不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。

John想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择?(当然,把新牧场完全荒废也是一种方案)

输入格式

第一行:两个整数M和N,用空格隔开。

第2到第M+1行:每行包含N个用空格隔开的整数,描述了每块土地的状态。第i+1行描述了第i行的土地,所有整数均为0或1,是1的话,表示这块土地足够肥沃,0则表示这块土地不适合种草。

输出格式

一个整数,即牧场分配总方案数除以100,000,000的余数。

输入输出样例

输入 #1
2 3
1 1 1
0 1 0
输出 #1
9
思路

读入以后,我们用dp[i]来表示第i行上的草地情况,这里F数组里的是二进制数。tmp是2n,也就是这道题的最大状态(n列都是1)。

然后我们在0~tmp-1这些状态里找到合法状态,也就是不能两头牛的草地是相邻的。判断方法就是把这个二进制数左移一位and,然后右移一位and。如果这个状态是合法的,那么都应该返回0。

然后就开始动规,从第一行开始,在每行里找所有状态,如果这个状态是合法的,且不会在贫瘠的草地上(和(j & dp[i]) == j说明没有草地种在贫瘠的地方),那么接下来开始找上一行的合法情况(上下两行之间没有相邻的草地),把上一行的情况数加到f[i][j]里。

最后把最下面一行的每一列的情况书统统加起来,就是答案啦~

代码:

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

const int N=4110,M=20;
const int Mod=100000000;

int dp[N],a[M][M];
int m,n,ans,f[M][N];

int main () {
	scanf("%d%d",&n,&m);
	for(int i=1; i<=n; i++)
		for(int j=1; j<=m; j++)
			scanf("%d",&a[i][j]);
	for(int i=1; i<=n; i++)
		for(int j=1; j<=m; j++)
			dp[i]=(dp[i]<<1)+a[i][j];
	int tmp=1<<m;
	f[0][0]=1;
	for(int i=1; i<=n; i++)
		for(int j=0; j<tmp; j++)
			if(((j&(j<<1))==0)&&((j&dp[i])==j))
				for(int k=0; k<tmp; k++)
					if((j&k)==0)
						f[i][j]=(f[i][j]+f[i-1][k])%Mod;
	for(int i=0; i<tmp; i++)
		ans=(ans+f[n][i])%Mod;
	printf("%d\n",ans);
	return 0;
}

 

posted @ 2019-07-26 22:01  双子最可爱啦  阅读(111)  评论(0编辑  收藏  举报