延时任务解决方案 — 转

 

在开发中,往往会遇到一些关于延时任务的需求。例如

  • 生成订单30分钟未支付,则自动取消
  • 生成订单60秒后,给用户发短信

对上述的任务,我们给一个专业的名字来形容,那就是延时任务。那么这里就会产生一个问题,这个延时任务定时任务的区别究竟在哪里呢?一共有如下几点区别

  1. 定时任务有明确的触发时间,延时任务没有
  2. 定时任务有执行周期,而延时任务在某事件触发后一段时间内执行,没有执行周期
  3. 定时任务一般执行的是批处理操作是多个任务,而延时任务一般是单个任务

下面,我们以判断订单是否超时为例,进行方案分析

 

定时任务扫库


 思路

  该方案通常是在小型项目中使用,即通过一个线程定时的去扫描数据库,通过订单时间来判断是否有超时的订单,然后进行update或delete等操作

例子实现:

使用quartz来实现

<dependency>
        <groupId>org.quartz-scheduler</groupId>
        <artifactId>quartz</artifactId>
        <version>2.2.2</version>
    </dependency>
import org.quartz.Job;
import org.quartz.JobBuilder;
import org.quartz.JobDetail;
import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException;
import org.quartz.Scheduler;
import org.quartz.SimpleScheduleBuilder;
import org.quartz.Trigger;
import org.quartz.TriggerBuilder;
import org.quartz.impl.StdSchedulerFactory;

public class MyJob implements Job{

    @Override
    public void execute(JobExecutionContext context) throws JobExecutionException {
        System.out.println("要去数据库扫描啦。。。");
    }
    
    public static void main(String[] args) throws Exception{
        // 创建任务
        JobDetail jobDetail = JobBuilder.newJob(MyJob.class)
                                        .withIdentity("job1", "group1").build();
        
        // 创建触发器 每3秒钟执行一次
        Trigger trigger = TriggerBuilder
                .newTrigger()
                .withIdentity("trigger1", "group3")
                .withSchedule(
                        SimpleScheduleBuilder.simpleSchedule()
                        .withIntervalInSeconds(3).repeatForever())
                .build();
        Scheduler scheduler = new StdSchedulerFactory().getScheduler();
        
        // 将任务及其触发器放入调度器
        scheduler.scheduleJob(jobDetail, trigger);
        // 调度器开始调度任务
        scheduler.start();
    }

}

运行代码,可发现每隔3秒,输出如下

要去数据库扫描啦。。。

优缺点

优点: 简单易行,支持集群操作
缺点:

  (1)轮询效率比较低

  (2)每次扫库,已经被执行过记录,仍然会被扫描(只是不会出现在结果集中),有重复计算的嫌疑;

  (3)时效性不够好,如果每小时轮询一次,最差的情况下,时间误差会达到1小时;

  (4)如果通过增加cron轮询频率来减少时间误差,则轮询低效和重复计算的问题会进一步凸显;

 

JDK的延迟队列


  该方案是利用JDK自带的DelayQueue来实现,这是一个无界阻塞队列,该队列只有在延迟期满的时候才能从中获取元素,放入DelayQueue中的对象,是必须实现Delayed接口的。

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.DelayQueue;
import java.util.concurrent.Delayed;
import java.util.concurrent.TimeUnit;

public class OrderDelay implements Delayed{
    
    private String orderId;
    private long timeout;
    
    public OrderDelay(String orderId, long timeout) {
        this.orderId = orderId;
        this.timeout = timeout + System.nanoTime();
    }

    @Override
    public int compareTo(Delayed other) {
        if(other == null) return 0;
        OrderDelay t = (OrderDelay) other;
        long d = (getDelay(TimeUnit.NANOSECONDS) - t.getDelay(TimeUnit.NANOSECONDS));
        return (d == 0) ? 0 : ((d < 0) ? -1 : 1);
    }

    // 返回距离你自定义的超时时间还有多少
    @Override
    public long getDelay(TimeUnit unit) {
        return unit.convert(timeout - System.nanoTime(), TimeUnit.NANOSECONDS);
    }

    void print() {
        System.out.println(orderId+"编号的订单要删除啦。。。。");
    }
    
    
    public static void main(String[] args) {
        List<String> list = new ArrayList<String>();
        list.add("00000001");
        list.add("00000002");
        list.add("00000003");
        list.add("00000004");
        list.add("00000005");
        
        DelayQueue<OrderDelay> queue = new DelayQueue<OrderDelay>();
        long start = System.currentTimeMillis();
        
        for(int i = 0; i < 5; i++) {
            //延迟三秒取出
            queue.put(new OrderDelay(list.get(i), TimeUnit.NANOSECONDS.convert(3, TimeUnit.SECONDS)));
            try {
                queue.take().print();
                System.out.println("After " + (System.currentTimeMillis()-start) + " MilliSeconds");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        
    }
}

输出如下:

00000001编号的订单要删除啦。。。。
After 3003 MilliSeconds
00000002编号的订单要删除啦。。。。
After 6006 MilliSeconds
00000003编号的订单要删除啦。。。。
After 9006 MilliSeconds
00000004编号的订单要删除啦。。。。
After 12008 MilliSeconds
00000005编号的订单要删除啦。。。。
After 15009 MilliSeconds

可以看到都是延迟3秒,订单被删除

优点: 效率高,任务触发时间延迟低。

缺点:

  (1)服务器重启后,数据全部消失,怕宕机;

  (2)集群扩展相当麻烦;

  (3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常 ;

  (4)代码复杂度较高

 

时间轮算法(高效延时消息)


 例如一个时间轮为1个小时(3600秒) 

高效延时消息,包含两个重要的数据结构

  (1)环形队列,例如可以创建一个包含3600个slot的环形队列(本质是个数组);

  (2)任务集合,环上每一个slot是一个Set<Task>

 

同时,启动一个timer

  (1)此timer每隔1s,在环形队列中移动一格

  (2)用一个Current Index来标识正在检测的slot; 

 

Task结构中有两个很重要的属性

  (1)Cycle-Num:当Current Index第几圈扫描到这个Slot时,执行任务;

  (2)Task-Function:需要执行的任务函数;

                             

  如上图,假设当前Current Index指向第一格,当有延时消息到达之后,例如希望3610秒之后,触发一个延时消息任务,只需:

  (1)计算这个Task应该放在哪一个slot,现在指向1,3610秒之后,应该是第11格,所以这个Task应该放在第11个slot的Set<Task>中;

  (2)计算这个Task的Cycle-Num,由于环形队列是3600格(每秒移动一格,正好1小时),这个任务是3610秒后执行,所以应该绕3610/3600=1圈之后再执行,于是Cycle-Num=1; 

 

  Current Index不停的移动,每秒移动一格,当移动到一个新slot,遍历这个slot中对应的Set<Task>,每个Task看Cycle-Num是不是0:

  (1)如果不是0,说明还需要多移动几圈,将Cycle-Num减1

  (2)如果是0,说明马上要执行这个Task了,取出Task-Funciton执行,丢给工作线程执行,并把这个Task从Set<Task>中删除;

  画外音:注意,不要用timer来执行任务,否则timer会越来越不准。

 

   使用了“延时消息”方案之后,“订单48小时后关闭评价”的需求,只需将在订单关闭时,触发一个48小时之后的延时消息即可:

    (1)无需再轮询全部订单,效率高

    (2)一个订单,任务只执行一次

    (3)时效性好,精确到秒;

  画外音:控制timer移动频率可以控制精度。 

 

  可以使用NettyHashedWheelTimer来实现

 

redis缓存


 利用redis的zset,zset是一个有序集合,每一个元素(member)都关联了一个score,通过score排序来取集合中的值

  添加元素:  ZADD key score member [[score member] [score member] ...]

  按顺序查询元素:  ZRANGE key start stop [WITHSCORES]

  查询元素score:  ZSCORE key member

  移除元素:  ZREM key member [member ...]

那么如何实现呢?我们将订单超时时间戳与订单号分别设置为score和member,系统扫描第一个元素判断是否超时

import java.util.Calendar;
import java.util.Set;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.Tuple;

public class AppTest {
    private static final String ADDR = "127.0.0.1";
    private static final int PORT = 6379;
    private static JedisPool jedisPool = new JedisPool(ADDR, PORT);
    
    public static Jedis getJedis() {
       return jedisPool.getResource();
    }
    
    //生产者,生成5个订单放进去
    public void productionDelayMessage(){
        for(int i=0;i<5;i++){
            //延迟3秒
            Calendar cal1 = Calendar.getInstance();
            cal1.add(Calendar.SECOND, 3);
            int second3later = (int) (cal1.getTimeInMillis() / 1000);
            AppTest.getJedis().zadd("OrderId", second3later,"OID0000001"+i);
            System.out.println(System.currentTimeMillis()+"ms:redis生成了一个订单任务:订单ID为"+"OID0000001"+i);
        }
    }
    
    //消费者,取订单
    public void consumerDelayMessage(){
        Jedis jedis = AppTest.getJedis();
        while(true){
            Set<Tuple> items = jedis.zrangeWithScores("OrderId", 0, 1);
            if(items == null || items.isEmpty()){
                System.out.println("当前没有等待的任务");
                try {
                    Thread.sleep(500);
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
                continue;
            }
            int  score = (int) ((Tuple)items.toArray()[0]).getScore();
            Calendar cal = Calendar.getInstance();
            int nowSecond = (int) (cal.getTimeInMillis() / 1000);
            if(nowSecond >= score){
                String orderId = ((Tuple)items.toArray()[0]).getElement();
                jedis.zrem("OrderId", orderId);
                System.out.println(System.currentTimeMillis() +"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
            }
        }
    }

    public static void main(String[] args) {
        AppTest appTest =new AppTest();
        appTest.productionDelayMessage();
        appTest.consumerDelayMessage();
    }
}

此时对应输出如下

1525086085261ms:redis生成了一个订单任务:订单ID为OID00000010
1525086085263ms:redis生成了一个订单任务:订单ID为OID00000011
1525086085266ms:redis生成了一个订单任务:订单ID为OID00000012
1525086085268ms:redis生成了一个订单任务:订单ID为OID00000013
1525086085270ms:redis生成了一个订单任务:订单ID为OID00000014
1525086088000ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525086088001ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525086088002ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525086088003ms:redis消费了一个任务:消费的订单OrderId为OID00000013
1525086088004ms:redis消费了一个任务:消费的订单OrderId为OID00000014
当前没有等待的任务
当前没有等待的任务
当前没有等待的任务

可以看到,几乎都是3秒之后,消费订单。

然而,这一版存在一个致命的硬伤,在高并发条件下,多消费者会取到同一个订单号,我们上测试代码ThreadTest

 

import java.util.concurrent.CountDownLatch;

public class ThreadTest {
    private static final int threadNum = 10;
    private static CountDownLatch cdl = new CountDownLatch(threadNum);

    static class DelayMessage implements Runnable {
        public void run() {
            try {
                cdl.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            AppTest appTest = new AppTest();
            appTest.consumerDelayMessage();
        }
    }

    public static void main(String[] args) {
        AppTest appTest =new AppTest();
        appTest.productionDelayMessage();
        for(int i=0;i<threadNum;i++){
            new Thread(new DelayMessage()).start();
            cdl.countDown();
        }
    }
}

输出如下所示

1525087157727ms:redis生成了一个订单任务:订单ID为OID00000010
1525087157734ms:redis生成了一个订单任务:订单ID为OID00000011
1525087157738ms:redis生成了一个订单任务:订单ID为OID00000012
1525087157747ms:redis生成了一个订单任务:订单ID为OID00000013
1525087157753ms:redis生成了一个订单任务:订单ID为OID00000014
1525087160009ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525087160011ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525087160012ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525087160022ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525087160023ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525087160029ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525087160038ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525087160045ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525087160048ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525087160053ms:redis消费了一个任务:消费的订单OrderId为OID00000013
1525087160064ms:redis消费了一个任务:消费的订单OrderId为OID00000013
1525087160065ms:redis消费了一个任务:消费的订单OrderId为OID00000014
1525087160069ms:redis消费了一个任务:消费的订单OrderId为OID00000014
当前没有等待的任务
当前没有等待的任务
当前没有等待的任务
当前没有等待的任务

显然,出现了多个线程消费同一个资源的情况。 

解决方案

  (1)用分布式锁,但是用分布式锁,性能下降了,该方案不细说。

  (2)对ZREM的返回值进行判断,只有大于0的时候,才消费数据,于是将consumerDelayMessage()方法里的

if(nowSecond >= score){
    String orderId = ((Tuple)items.toArray()[0]).getElement();
    jedis.zrem("OrderId", orderId);
    System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
}

修改为

if(nowSecond >= score){
    String orderId = ((Tuple)items.toArray()[0]).getElement();
    Long num = jedis.zrem("OrderId", orderId);
    if( num != null && num>0){
        System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
    }
}    

在这种修改后,重新运行ThreadTest类,发现输出正常了

思路二

  该方案使用redis的Keyspace Notifications,中文翻译就是[键空间机制],就是利用该机制可以在key失效之后,提供一个回调,实际上是redis会给客户端发送一个消息。是需要redis版本2.8以上。

  实现二 在redis.conf中,加入一条配置

notify-keyspace-events Ex

运行代码如下

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPubSub;

public class RedisTest {
    private static final String ADDR = "127.0.0.1";
    private static final int PORT = 6379;
    private static JedisPool jedis = new JedisPool(ADDR, PORT);
    private static RedisSub sub = new RedisSub();

    public static void init() {
        new Thread(new Runnable() {
            public void run() {
                jedis.getResource().subscribe(sub, "__keyevent@0__:expired");
            }
        }).start();
    }

    public static void main(String[] args) throws InterruptedException {
        init();
        for (int i = 0; i < 10; i++) {
            String orderId = "OID000000" + i;
            jedis.getResource().setex(orderId, 3, orderId);
            System.out.println(System.currentTimeMillis() + "ms:" + orderId + "订单生成");
        }
    }

    static class RedisSub extends JedisPubSub {
        @Override
        public void onMessage(String channel, String message) {
            System.out.println(System.currentTimeMillis()+"ms:"+message+"订单取消");
        }
    }
}

输出如下

1525096202813ms:OID0000000订单生成
1525096202818ms:OID0000001订单生成
1525096202824ms:OID0000002订单生成
1525096202826ms:OID0000003订单生成
1525096202830ms:OID0000004订单生成
1525096202834ms:OID0000005订单生成
1525096202839ms:OID0000006订单生成
1525096205819ms:OID0000000订单取消
1525096205920ms:OID0000005订单取消
1525096205920ms:OID0000004订单取消
1525096205920ms:OID0000001订单取消
1525096205920ms:OID0000003订单取消
1525096205920ms:OID0000006订单取消
1525096205920ms:OID0000002订单取消

可以明显看到3秒过后,订单取消了

ps:redis的 pub/sub 机制存在一个硬伤,

  Because Redis Pub/Sub is fire and forget currently there is no way to use this feature if your application demands reliable notification of events, that is, if your Pub/Sub client disconnects, and reconnects later, all the events delivered during the time the client was disconnected are lost.

  : Redis的发布/订阅目前是即发即弃(fire and forget)模式的,因此无法实现事件的可靠通知。也就是说,如果发布/订阅的客户端断链之后又重连,则在客户端断链期间的所有事件都丢失了。

  因此,方案二不是太推荐。当然,如果你对可靠性要求不高,可以使用。

优缺点

  优点:(1)由于使用Redis作为消息通道,消息都存储在Redis中。如果发送程序或者任务处理程序挂了,重启之后,还有重新处理数据的可能性;

     (2)做集群扩展相当方便;

     (3)时间准确度高

  缺点:(1)需要额外进行redis维护

 

 

消息队列实现


 

 

 

 

 

 

资料:

  https://www.cnblogs.com/rjzheng/p/8972725.html#top

  如何快速实现“延时消息”?

 

posted @ 2020-04-30 18:27  myseries  阅读(1129)  评论(0编辑  收藏  举报