Spring框架是怎么解决Bean之间的循环依赖的 (转)
问题:
循环依赖其实就是循环引用,也就是两个或则两个以上的bean互相持有对方,最终形成闭环。比如A依赖于B,B依赖于C,C又依赖于A。如下图:
如何理解“依赖”呢,在Spring中有:
- 构造器循环依赖
- field属性注入循环依赖
直接上代码:
构造器循环依赖
@Service public class A { public A(B b) { } } @Service public class B { public B(C c) { } } @Service public class C { public C(A a) { } }
结果:项目启动失败,发现了一个cycle
2.field属性注入循环依赖
@Service public class A1 { @Autowired private B1 b1; } @Service public class B1 { @Autowired public C1 c1; } @Service public class C1 { @Autowired public A1 a1; }
结果:项目启动成功
3.field属性注入循环依赖(prototype)
@Service @Scope("prototype") public class A1 { @Autowired private B1 b1; } @Service @Scope("prototype") public class B1 { @Autowired public C1 c1; } @Service @Scope("prototype") public class C1 { @Autowired public A1 a1; }
结果:项目启动失败,发现了一个cycle。
现象总结:同样对于循环依赖的场景,构造器注入和prototype类型的属性注入都会初始化Bean失败。因为@Service默认是单例的,所以单例的属性注入是可以成功的。
我们先看看Spring在使用set方法注入时,是怎样实例化一个Bean和Bean的合作者的:
在A中有一个setB方法用来接收B对象的实例。那么Spring实例化A对象的过程如下:
在不考虑Bean的初始化方法和一些Spring回调的情况下,Spring首先去调用A对象的构造函数实例化A,然后查找A依赖的对象本例子中是B(合作者)。一但找到合作者,Spring就会调用合作者(B)的构造函数实例化B。如果B还有依赖的对象Spring会把B上依赖的所有对象都按照相同的机制实例化然后调用A对象的setB(B b)把b对象注入给A。
因为Spring调用一个对象的set方法注入前,这个对象必须先被实例化。所以在"使用set方法注入"的情况下Spring会首先调用对象的构造函数。
我们在来看通过构造函数注入的过程:
如果发现配置了对象的构造注入,那么Spring会在调用构造函数前把构造函数需要的依赖对象都实例化好,然后再把这些实例化后的对象作为参数去调用构造函数。
通过构造函数的注入方式其实表达了2个对象间的一种强的聚合关系:组合关系。就比如一辆车如果没有轮子、引擎等部件那么车也就不存在了。而且车是由若干重 要部件组成的,在这些部件没有的情况下车也不可能存在。这里车和他的重要部件就时组合的关系。如果你的应用中有这样类似的场景那么你应该使用“构造函数注 入”的方式管理他们的关系。“构造函数注入”可以保证合作者先创建,在后在创建自己。
通过set方法注入的方式表达了2个对象间较弱的依赖关系:聚合关系。就像一辆车,如果没有车内音像车也时可以工作的。当你不要求合作者于自己被创建 时,“set方法注入”注入比较合适。
使用构造函数依赖注入时,Spring保证所有一个对象所有依赖的对象先实例化后,才实例化这个对象。(没有他们就没有我原则)
使用set方法依赖注入时,Spring首先实例化对象,然后才实例化所有依赖的对象。
Spring如何解决循环依赖
spring中循环依赖有三种情况:
1、构造器注入形成的循环依赖。也就是beanB需要在beanA的构造函数中完成初始化,beanA也需要在beanB的构造函数中完成舒适化,这种情况的结果就是两个bean都不能完成初始化,循环依赖难以解决。
2、setter注入构成的循环依赖。beanA需要在beanB的setter方法中完成初始化,beanB也需要在beanA的setter方法中完成初始化,spring设计的机制主要就是解决这种循环依赖,也是今天下文讨论的重点。
3、prototype作用域bean的循环依赖。这种循环依赖同样无法解决,因为spring不会缓存‘prototype’作用域的bean,而spring中循环依赖的解决正是通过缓存来实现的。
下面主要说明第二种情况中循环依赖的解决方案
步骤一:beanA进行初始化,并且将自己进行初始化的状态记录下来,并提前向外暴露一个单例工程方法,从而使其他bean能引用到该bean(可能读完这一句,您仍然心存疑惑,没关系,继续往下读)
步骤二:beanA中有beanB的依赖,于是开始初始化beanB。
步骤三:初始化beanB的过程中又发现beanB依赖了beanA,于是又进行beanA的初始化,这时发现beanA已经在进行初始化了,程序发现了存在的循环依赖,然后通过步骤一中暴露的单例工程方法拿到beanA的引用(注意,此时的beanA只是完成了构造函数的注入但为完成其他步骤),从而beanB拿到beanA的引用,完成注入,完成了初始化,如此beanB的引用也就可以被beanA拿到,从而beanA也就完成了初始化。
spring进行bean的加载的时候,首先进行bean的初始化(调用构造函数),然后进行属性填充。在这两步中间,spring对bean进行了一次状态的记录,也就是说spring会把指向只完成了构造函数初始化的bean的引用通过一个变量记录下来,明白这一点对之后的源码理解至关重要。
源码角度观看循环依赖的解决步骤
步骤一中首先进行beanA的创建
if (mbd.isSingleton()) { sharedInstance = getSingleton(beanName, () -> { try { return createBean(beanName, mbd, args); } catch (BeansException ex) { // Explicitly remove instance from singleton cache: It might have been put there // eagerly by the creation process, to allow for circular reference resolution. // Also remove any beans that received a temporary reference to the bean. destroySingleton(beanName); throw ex; } });
进入getSingleton中,spirng会记录当前beanA正在创建中
if (!this.inCreationCheckExclusions.contains(beanName) && !this.singletonsCurrentlyInCreation.add(beanName)) { throw new BeanCurrentlyInCreationException(beanName); }
并且将注册一个工厂方法来解决循环依赖
boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences && isSingletonCurrentlyInCreation(beanName)); if (earlySingletonExposure) { if (logger.isDebugEnabled()) { logger.debug("Eagerly caching bean '" + beanName + "' to allow for resolving potential circular references"); } 这里: addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean)); }
主要就是addSingletonFactory,这句就完成了工厂方法的注册,这个方法可以返回一个只完成了构造函数初始化的beanA,也许大家想知道他是如何返回的,我们进入getEarlyBeanReference方法
protected Object getEarlyBeanReference(String beanName, RootBeanDefinition mbd, Object bean) { Object exposedObject = bean; if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) { for (BeanPostProcessor bp : getBeanPostProcessors()) { if (bp instanceof SmartInstantiationAwareBeanPostProcessor) { SmartInstantiationAwareBeanPostProcessor ibp = (SmartInstantiationAwareBeanPostProcessor) bp; exposedObject = ibp.getEarlyBeanReference(exposedObject, beanName); } } } return exposedObject; }
可以看到这个方法中,除了对后处理器的调用,没有进行任何动作,而是直接返回了我们参数传入的bean,那么这个bean是哪来的呢?其实在这之前,spring先调用了beanA的构造函数,并拿到了只完成了构造函数初始化的一个实例,并把他记录了下来。
if (mbd.isSingleton()) { instanceWrapper = this.factoryBeanInstanceCache.remove(beanName); } if (instanceWrapper == null) { instanceWrapper = createBeanInstance(beanName, mbd, args); } final Object bean = instanceWrapper.getWrappedInstance();
这就是这个bean的由来。然后当我们进行到步骤三的时候,就会检查是否允许循环依赖(即使是Singleton类型的bean也可以通过参数设置,禁止循环依赖),如果允许的话,就会通过这个工厂方法拿到beanA的引用。从而完成beanA和beanB的加载。
protected Object getSingleton(String beanName, boolean allowEarlyReference) { Object singletonObject = this.singletonObjects.get(beanName); if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) { synchronized (this.singletonObjects) { singletonObject = this.earlySingletonObjects.get(beanName); if (singletonObject == null && allowEarlyReference) { ObjectFactory<?> singletonFactory = this.singletonFactories.get(beanName); if (singletonFactory != null) { 这里: singletonObject = singletonFactory.getObject(); this.earlySingletonObjects.put(beanName, singletonObject); this.singletonFactories.remove(beanName); } } } } return singletonObject; }
也可以看这篇 : Spring如何解决循环依赖的问题
在关于Spring的面试中,我们经常会被问到一个问题,就是Spring是如何解决循环依赖的问题的。这个问题算是关于Spring的一个高频面试题,因为如果不刻意研读,相信即使读过源码,面试者也不一定能够一下子思考出个中奥秘。本文主要针对这个问题,从源码的角度对其实现原理进行讲解。
1. 过程演示
关于Spring bean的创建,其本质上还是一个对象的创建,既然是对象,读者朋友一定要明白一点就是,一个完整的对象包含两部分:当前对象实例化和对象属性的实例化。在Spring中,对象的实例化是通过反射实现的,而对象的属性则是在对象实例化之后通过一定的方式设置的。这个过程可以按照如下方式进行理解:
理解这一个点之后,对于循环依赖的理解就已经帮助一大步了,我们这里以两个类A和B为例进行讲解,如下是A和B的声明:
@Component public class A { private B b; public void setB(B b) { this.b = b; } } @Component public class B { private A a; public void setA(A a) { this.a = a; } }
可以看到,这里A和B中各自都以对方为自己的全局属性。这里首先需要说明的一点是,Spring实例化bean是通过ApplicationContext.getBean()
方法来进行的。如果要获取的对象依赖了另一个对象,那么其首先会创建当前对象,然后通过递归的调用ApplicationContext.getBean()
方法来获取所依赖的对象,最后将获取到的对象注入到当前对象中。这里我们以上面的首先初始化A对象实例为例进行讲解。首先Spring尝试通过ApplicationContext.getBean()
方法获取A对象的实例,由于Spring容器中还没有A对象实例,因而其会创建一个A对象,然后发现其依赖了B对象,因而会尝试递归的通过ApplicationContext.getBean()
方法获取B对象的实例,但是Spring容器中此时也没有B对象的实例,因而其还是会先创建一个B对象的实例。读者需要注意这个时间点,此时A对象和B对象都已经创建了,并且保存在Spring容器中了,只不过A对象的属性b和B对象的属性a都还没有设置进去。在前面Spring创建B对象之后,Spring发现B对象依赖了属性A,因而此时还是会尝试递归的调用ApplicationContext.getBean()
方法获取A对象的实例,因为Spring中已经有一个A对象的实例,虽然只是半成品(其属性b还未初始化),但其也还是目标bean,因而会将该A对象的实例返回。此时,B对象的属性a就设置进去了,然后还是ApplicationContext.getBean()
方法递归的返回,也就是将B对象的实例返回,此时就会将该实例设置到A对象的属性b中。这个时候,注意A对象的属性b和B对象的属性a都已经设置了目标对象的实例了。读者朋友可能会比较疑惑的是,前面在为对象B设置属性a的时候,这个A类型属性还是个半成品。但是需要注意的是,这个A是一个引用,其本质上还是最开始就实例化的A对象。而在上面这个递归过程的最后,Spring将获取到的B对象实例设置到了A对象的属性b中了,这里的A对象其实和前面设置到实例B中的半成品A对象是同一个对象,其引用地址是同一个,这里为A对象的b属性设置了值,其实也就是为那个半成品的a属性设置了值。下面我们通过一个流程图来对这个过程进行讲解:
图中getBean()
表示调用Spring的ApplicationContext.getBean()
方法,而该方法中的参数,则表示我们要尝试获取的目标对象。图中的黑色箭头表示一开始的方法调用走向,走到最后,返回了Spring中缓存的A对象之后,表示递归调用返回了,此时使用绿色的箭头表示。从图中我们可以很清楚的看到,B对象的a属性是在第三步中注入的半成品A对象,而A对象的b属性是在第二步中注入的成品B对象,此时半成品的A对象也就变成了成品的A对象,因为其属性已经设置完成了。
2. 源码讲解
对于Spring处理循环依赖问题的方式,我们这里通过上面的流程图其实很容易就可以理解,需要注意的一个点就是,Spring是如何标记开始生成的A对象是一个半成品,并且是如何保存A对象的。这里的标记工作Spring是使用ApplicationContext的属性Set<String> singletonsCurrentlyInCreation
来保存的,而半成品的A对象则是通过Map<String, ObjectFactory<?>> singletonFactories
来保存的,这里的ObjectFactory
是一个工厂对象,可通过调用其getObject()
方法来获取目标对象。在AbstractBeanFactory.doGetBean()
方法中获取对象的方法如下:
protected <T> T doGetBean(final String name, @Nullable final Class<T> requiredType, @Nullable final Object[] args, boolean typeCheckOnly) throws BeansException { // 尝试通过bean名称获取目标bean对象,比如这里的A对象 Object sharedInstance = getSingleton(beanName); // 我们这里的目标对象都是单例的 if (mbd.isSingleton()) { // 这里就尝试创建目标对象,第二个参数传的就是一个ObjectFactory类型的对象,这里是使用Java8的lamada // 表达式书写的,只要上面的getSingleton()方法返回值为空,则会调用这里的getSingleton()方法来创建 // 目标对象 sharedInstance = getSingleton(beanName, () -> { try { // 尝试创建目标对象 return createBean(beanName, mbd, args); } catch (BeansException ex) { throw ex; } }); } return (T) bean; }
这里的doGetBean()
方法是非常关键的一个方法(中间省略了其他代码),上面也主要有两个步骤,第一个步骤的getSingleton()
方法的作用是尝试从缓存中获取目标对象,如果没有获取到,则尝试获取半成品的目标对象;如果第一个步骤没有获取到目标对象的实例,那么就进入第二个步骤,第二个步骤的getSingleton()
方法的作用是尝试创建目标对象,并且为该对象注入其所依赖的属性。
这里其实就是主干逻辑,我们前面图中已经标明,在整个过程中会调用三次doGetBean()
方法,第一次调用的时候会尝试获取A对象实例,此时走的是第一个getSingleton()
方法,由于没有已经创建的A对象的成品或半成品,因而这里得到的是null
,然后就会调用第二个getSingleton()
方法,创建A对象的实例,然后递归的调用doGetBean()
方法,尝试获取B对象的实例以注入到A对象中,此时由于Spring容器中也没有B对象的成品或半成品,因而还是会走到第二个getSingleton()
方法,在该方法中创建B对象的实例,创建完成之后,尝试获取其所依赖的A的实例作为其属性,因而还是会递归的调用doGetBean()
方法,此时需要注意的是,在前面由于已经有了一个半成品的A对象的实例,因而这个时候,再尝试获取A对象的实例的时候,会走第一个getSingleton()
方法,在该方法中会得到一个半成品的A对象的实例。然后将该实例返回,并且将其注入到B对象的属性a中,此时B对象实例化完成。然后将实例化完成的B对象递归的返回,此时就会将该实例注入到A对象中,这样就得到了一个成品的A对象。我们这里可以阅读上面的第一个getSingleton()
方法:
@Nullable protected Object getSingleton(String beanName, boolean allowEarlyReference) { // 尝试从缓存中获取成品的目标对象,如果存在,则直接返回 Object singletonObject = this.singletonObjects.get(beanName); // 如果缓存中不存在目标对象,则判断当前对象是否已经处于创建过程中,在前面的讲解中,第一次尝试获取A对象 // 的实例之后,就会将A对象标记为正在创建中,因而最后再尝试获取A对象的时候,这里的if判断就会为true if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) { synchronized (this.singletonObjects) { singletonObject = this.earlySingletonObjects.get(beanName); if (singletonObject == null && allowEarlyReference) { // 这里的singletonFactories是一个Map,其key是bean的名称,而值是一个ObjectFactory类型的 // 对象,这里对于A和B而言,调用图其getObject()方法返回的就是A和B对象的实例,无论是否是半成品 ObjectFactory<?> singletonFactory = this.singletonFactories.get(beanName); if (singletonFactory != null) { // 获取目标对象的实例 singletonObject = singletonFactory.getObject(); this.earlySingletonObjects.put(beanName, singletonObject); this.singletonFactories.remove(beanName); } } } } return singletonObject; }
这里我们会存在一个问题就是A的半成品实例是如何实例化的,然后是如何将其封装为一个ObjectFactory
类型的对象,并且将其放到上面的singletonFactories
属性中的。这主要是在前面的第二个getSingleton()
方法中,其最终会通过其传入的第二个参数,从而调用createBean()
方法,该方法的最终调用是委托给了另一个doCreateBean()
方法进行的,这里面有如下一段代码:
protected Object doCreateBean(final String beanName, final RootBeanDefinition mbd, final @Nullable Object[] args) throws BeanCreationException { // 实例化当前尝试获取的bean对象,比如A对象和B对象都是在这里实例化的 BeanWrapper instanceWrapper = null; if (mbd.isSingleton()) { instanceWrapper = this.factoryBeanInstanceCache.remove(beanName); } if (instanceWrapper == null) { instanceWrapper = createBeanInstance(beanName, mbd, args); } // 判断Spring是否配置了支持提前暴露目标bean,也就是是否支持提前暴露半成品的bean boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences && isSingletonCurrentlyInCreation(beanName)); if (earlySingletonExposure) { // 如果支持,这里就会将当前生成的半成品的bean放到singletonFactories中,这个singletonFactories // 就是前面第一个getSingleton()方法中所使用到的singletonFactories属性,也就是说,这里就是 // 封装半成品的bean的地方。而这里的getEarlyBeanReference()本质上是直接将放入的第三个参数,也就是 // 目标bean直接返回 addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean)); } try { // 在初始化实例之后,这里就是判断当前bean是否依赖了其他的bean,如果依赖了, // 就会递归的调用getBean()方法尝试获取目标bean populateBean(beanName, mbd, instanceWrapper); } catch (Throwable ex) { // 省略... } return exposedObject; }
到这里,Spring整个解决循环依赖问题的实现思路已经比较清楚了。对于整体过程,读者朋友只要理解两点:
- Spring是通过递归的方式获取目标bean及其所依赖的bean的;
- Spring实例化一个bean的时候,是分两步进行的,首先实例化目标bean,然后为其注入属性。
结合这两点,也就是说,Spring在实例化一个bean的时候,是首先递归的实例化其所依赖的所有bean,直到某个bean没有依赖其他bean,此时就会将该实例返回,然后反递归的将获取到的bean设置为各个上层bean的属性的。
3. 小结
本文首先通过图文的方式对Spring是如何解决循环依赖的问题进行了讲解,然后从源码的角度详细讲解了Spring是如何实现各个bean的装配工作的。
出处:
https://cloud.tencent.com/developer/article/1455953
https://www.jianshu.com/p/8bb67ca11831
另一篇文章关于Spring的循环依赖分析: 图解Spring解决循环依赖
前言
Spring如何解决的循环依赖,是近两年流行起来的一道Java面试题。
其实笔者本人对这类框架源码题还是持一定的怀疑态度的。
如果笔者作为面试官,可能会问一些诸如“如果注入的属性为null,你会从哪几个方向去排查”这些场景题。
那么既然写了这篇文章,闲话少说,发车看看Spring是如何解决的循环依赖,以及带大家看清循环依赖的本质是什么。
正文
通常来说,如果问Spring内部如何解决循环依赖,一定是单默认的单例Bean中,属性互相引用的场景。
比如几个Bean之间的互相引用:
甚至自己“循环”依赖自己:
先说明前提:原型(Prototype)的场景是不支持循环依赖的,通常会走到AbstractBeanFactory
类中下面的判断,抛出异常。
if (isPrototypeCurrentlyInCreation(beanName)) { throw new BeanCurrentlyInCreationException(beanName); }
原因很好理解,创建新的A时,发现要注入原型字段B,又创建新的B发现要注入原型字段A...
这就套娃了, 你猜是先StackOverflow还是OutOfMemory?
Spring怕你不好猜,就先抛出了BeanCurrentlyInCreationException
基于构造器的循环依赖,就更不用说了,官方文档都摊牌了,你想让构造器注入支持循环依赖,是不存在的,不如把代码改了。
那么默认单例的属性注入场景,Spring是如何支持循环依赖的?
Spring解决循环依赖
首先,Spring内部维护了三个Map,也就是我们通常说的三级缓存。
笔者翻阅Spring文档倒是没有找到三级缓存的概念,可能也是本土为了方便理解的词汇。
在Spring的DefaultSingletonBeanRegistry
类中,你会赫然发现类上方挂着这三个Map:
-
singletonObjects 它是我们最熟悉的朋友,俗称“单例池”“容器”,缓存创建完成单例Bean的地方。
-
singletonFactories 映射创建Bean的原始工厂
-
earlySingletonObjects 映射Bean的早期引用,也就是说在这个Map里的Bean不是完整的,甚至还不能称之为“Bean”,只是一个Instance.
后两个Map其实是“垫脚石”级别的,只是创建Bean的时候,用来借助了一下,创建完成就清掉了。
所以笔者前文对“三级缓存”这个词有些迷惑,可能是因为注释都是以Cache of开头吧。
为什么成为后两个Map为垫脚石,假设最终放在singletonObjects的Bean是你想要的一杯“凉白开”。
那么Spring准备了两个杯子,即singletonFactories和earlySingletonObjects来回“倒腾”几番,把热水晾成“凉白开”放到singletonObjects中。
闲话不说,都浓缩在图里。
上面的是一张GIF,如果你没看到可能还没加载出来。三秒一帧,不是你电脑卡。
笔者画了17张图简化表述了Spring的主要步骤,GIF上方即是刚才提到的三级缓存,下方展示是主要的几个方法。
当然了,这个地步你肯定要结合Spring源码来看,要不肯定看不懂。
如果你只是想大概了解,或者面试,可以先记住笔者上文提到的“三级缓存”,以及下文即将要说的本质。
循环依赖的本质
上文了解完Spring如何处理循环依赖之后,让我们跳出“阅读源码”的思维,假设让你实现一个有以下特点的功能,你会怎么做?
- 将指定的一些类实例为单例
- 类中的字段也都实例为单例
- 支持循环依赖
举个例子,假设有类A:
public class A { private B b; }
类B:
public class B { private A a; }
说白了让你模仿Spring:假装A和B是被@Component修饰,
并且类中的字段假装是@Autowired修饰的,处理完放到Map中。
其实非常简单,笔者写了一份粗糙的代码,可供参考:
import java.lang.reflect.Field; import java.util.HashMap; import java.util.Map; public class SpringTest { private static Map<String, Object> cacheMap = new HashMap<String, Object>(2); public static void main(String[] args) throws Exception { // 假装扫描出来的对象 Class[] classes = {A.class, B.class}; for(Class aClass : classes) { getBean(aClass); } // check System.out.println(getBean(B.class).getA() == getBean(A.class)); System.out.println(getBean(A.class).getB() == getBean(B.class)); } private static <T> T getBean(Class<T> beanClass) throws Exception{ // 本文用类名小写 简单代替bean的命名规则 String beanName = beanClass.getSimpleName().toLowerCase(); // 如果已经是一个bean,则直接返回 if (cacheMap.containsKey(beanName)) { return (T) cacheMap.get(beanName); } // 将对象本身实例化 Object object = beanClass.getDeclaredConstructor().newInstance(); // 放入缓存 cacheMap.put(beanName, object); // 把所有字段当成需要注入的bean,创建并注入到当前bean中 Field[] fields = object.getClass().getDeclaredFields(); for (Field field : fields) { field.setAccessible(true); // 获取需要注入字段的class Class<?> fieldClass = field.getType(); String fieldBeanName = fieldClass.getSimpleName().toLowerCase(); // 如果需要注入的bean,已经在缓存Map中,那么把缓存Map中的值注入到该field即可 // 如果缓存没有 继续创建 field.set(object, cacheMap.containsKey(fieldBeanName) ? cacheMap.get(fieldBeanName) : getBean(fieldClass)); } // 属性填充完成,返回 return (T) object; } } class A { private B b; public B getB() { return b; } public void setB(B b) { this.b = b; } } class B { private A a; public A getA() { return a; } public void setA(A a) { this.a = a; } }
这段代码的效果,其实就是处理了循环依赖,并且处理完成后,cacheMap中放的就是完整的“Bean”了
这就是“循环依赖”的本质,而不是“Spring如何解决循环依赖”。
之所以要举这个例子,是发现一小部分盆友陷入了“阅读源码的泥潭”,而忘记了问题的本质。
为了看源码而看源码,结果一直看不懂,却忘了本质是什么。
如果真看不懂,不如先写出基础版本,逆推Spring为什么要这么实现,可能效果会更好。
what?问题的本质居然是two sum!
看完笔者刚才的代码有没有似曾相识?没错,和two sum的解题是类似的。
不知道two sum是什么梗的,笔者和你介绍一下:
two sum是刷题网站leetcode序号为1的题,也就是大多人的算法入门的第一题。
常常被人调侃,有算法面的公司,被面试官钦定了,合的来。那就来一道two sum走走过场。
问题内容是:给定一个数组,给定一个数字。返回数组中可以相加得到指定数字的两个索引。
比如:给定nums = [2, 7, 11, 15], target = 9
那么要返回 [0, 1]
,因为2 + 7 = 9
这道题的优解是,一次遍历+HashMap:
class Solution { public int[] twoSum(int[] nums, int target) { Map<Integer, Integer> map = new HashMap<>(); for (int i = 0; i < nums.length; i++) { int complement = target - nums[i]; if (map.containsKey(complement)) { return new int[] { map.get(complement), i }; } map.put(nums[i], i); } throw new IllegalArgumentException("No two sum solution"); } }
先去Map中找需要的数字,没有就将当前的数字保存在Map中,如果找到需要的数字,则一起返回。
和笔者上面的代码是不是一样?
先去缓存里找Bean,没有则实例化当前的Bean放到Map,如果有需要依赖当前Bean的,就能从Map取到。
结尾
如果你是上文笔者提到的“陷入阅读源码的泥潭”的读者,上文应该可以帮助到你。
可能还有盆友有疑问,为什么一道“two-sum”,Spring处理的如此复杂?
这个想想Spring支持多少功能就知道了,各种实例方式..各种注入方式..各种Bean的加载,校验..各种callback,aop处理等等..
Spring可不只有依赖注入,同样Java也不仅是Spring。如果我们陷入了某个“牛角尖”,不妨跳出来看看,可能会更佳清晰哦。