01分数规划POJ2976(简单模板题)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 7276 | Accepted: 2523 |
Description
In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be
.
Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.
Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .
Input
The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bifor all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.
Output
For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.
Sample Input
3 1 5 0 2 5 1 6 4 2 1 2 7 9 5 6 7 9 0 0
Sample Output
83 100
Hint
To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).
题意:给定n个二元组(a,b),删除k个二元组,使得剩下的a元素之和与b元素之和的比率最大,最后的比率乘于100,然后输出跟最大比率最接近的整数
分析:设r=sigma(ai*xi)/sigma(bi*xi);其中xi={0,1},sigma(xi)=n-k,设R为最优值,
即:r<=R
即:sigma(ai*xi)/sigma(bi*xi)<=R
即:sigma(ai*xi)-sigma(R*bi*xi)<=0
也就是说sigma(ai*xi)-sigma(R*bi*xi)的最大值为0,
等价于 sigma((ai-R*bi)*xi)的最大值等于0;
因为h(r)=sigma((ai-R*bi)*xi)为单调递减函数,
所以可以二分求
#include"stdio.h" #include"algorithm" #include"string.h" #include"iostream" #include"queue" #include"map" #include"stack" #include"cmath" #include"vector" #include"string" #define M 1009 #define N 20003 #define eps 1e-7 #define mod 123456 #define inf 100000000 using namespace std; int a[M],b[M],n,k; double s[M]; int cmp(double a,double b) { return a>b; } double fun(int n,double r) { for(int i=1;i<=n;i++) s[i]=a[i]-r*b[i]; sort(s+1,s+n+1,cmp); double sum=0; for(int i=1;i<=n-k;i++) sum+=s[i]; return sum; } int main() { while(scanf("%d%d",&n,&k),n||k) { double l=0,r=0,mid=0; for(int i=1;i<=n;i++) { scanf("%d",&a[i]); r+=a[i]; } for(int i=1;i<=n;i++) scanf("%d",&b[i]); while(r-l>eps) { mid=(l+r)/2; double msg=fun(n,mid); if(msg<0) { r=mid; } else { l=mid; } } printf("%.0lf\n",r*100); } return 0; }