最小圆覆盖(随机增量法&模拟退火法)
http://acm.hdu.edu.cn/showproblem.php?pid=3007
相关题型连接:
http://acm.hdu.edu.cn/showproblem.php?pid=3932
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=450
Buried memory
The world king Sconbin is not the exception.One day,Sconbin was sleeping,then swakened by one nightmare.It turned out that his love letters to Dufein were made public in his dream.These foolish letters might ruin his throne.Sconbin decided to destroy the letters by the military exercises's opportunity.The missile is the best weapon.Considered the execution of the missile,Sconbin chose to use one missile with the minimum destruction.
Sconbin had writen N letters to Dufein, she buried these letters on different places.Sconbin got the places by difficult,he wants to know where is the best place launch the missile,and the smallest radius of the burst area. Let's help Sconbin to get the award.
3 1.00 1.00 2.00 2.00 3.00 3.00 0
2.00 2.00 1.41
方法一:随机增量法:
分析:用最小的圆覆盖住所有的点:随机增量法复杂度是O(n);
2、算法及原理算法介绍:我们本次算法的设计是基于这样一个简单直观的性质:
在既定的给定点条件下,如果引入一张新的半平面,只要此前的最优解顶点(即唯一确定最小包围圆的几个关键顶点)能够包含于其中,则不必对此最优解进行修改,亦即此亦为新点集的最优解;否则,新的最优解顶点必然位于这个新的半空间的边界上。定理可以通过反证法证明。于是,基于此性质,我们便可得到一个类似于线性规划算法的随机增量式算法。定义Di为相对于pi的最小包围圆。此算法实现的关键在于对于pi∉Di-1时的处理。显然,如果pi∈Di-1,则Di= Di-1;否则,需要对Di另外更新。而且,Di的组成必然包含了pi;因此,此种情况下的最小包围圆是过pi点且覆盖点集{ p1 ,p2 ,p3 ……pi-1}的最小包围圆。则仿照上述处理的思路,Di={ p1 ,pi },逐个判断点集{ p2 ,p3 ……pi-1 },如果存在pj∉ Di,则Di={pj,pi }。同时,再依次对点集{ p1 ,p2 ,p3 ……pj-1 }判断是否满足pk∈Di,若有不满足,则Di={pk ,pj,pi }。由于,三点唯一地确定一个圆,故而,只需在此基础上判断其他的点是否位于此包围圆内,不停地更新pk。当最内层循环完成时,退出循环,转而更新pj;当次内层循环结束时,退出循环,更新pi。当i=n时,表明对所有的顶点均已处理过 ,此时的Dn即表示覆盖了给定n个点的最小包围圆。
总结:
假设圆O是前i-1个点得最小覆盖圆,加入第i个点,如果在圆内或边上则什么也不做。否,新得到的最小覆盖圆肯定经过第i个点。然后以第i个点为基础(半径为0),重复以上过程依次加入第j个点,若第j个点在圆外,则最小覆盖圆必经过第j个点。重复以上步骤(因为最多需要三个点来确定这个最小覆盖圆,所以重复三次)。遍历完所有点之后,所得到的圆就是覆盖所有点得最小圆。证明可以考虑这么做:最小圆必定是可以通过不断放大半径,直到所有以任意点为圆心,半径为半径的圆存在交点,此时的半径就是最小圆。所以上述定理可以通过这个思想得到。这个做法复杂度是O(n)的,当加入圆的顺序随机时,因为三点定一圆,所以不在圆内概率是3/i,求出期望可得是O(n)。
方法二:模拟退火法:对于每个枚举的点找到改点到所给点的最远点的距离,然后保证这个距离最小,即为所求圆的半径;
程序:
方法一:随机增量法:
#include"string.h" #include"stdio.h" #include"queue" #include"stack" #include"vector" #include"algorithm" #include"iostream" #include"math.h" #include"stdlib.h" #define M 522 #define inf 100000000 #define eps 1e-8 #define PI acos(-1.0) using namespace std; double X,Y; struct Point { double x,y; }p[M]; struct Triangle { Point v[3]; }; struct Circle { Point center; double r; }; double pow(double x) { return x*x; } double Len(Point a,Point b) { return sqrt(pow(a.x-b.x)+pow(a.y-b.y)); } double TriangleArea(Triangle a)//求三角形的面积 { double px1=a.v[1].x-a.v[0].x; double py1=a.v[1].y-a.v[0].y; double px2=a.v[2].x-a.v[0].x; double py2=a.v[2].y-a.v[0].y; return fabs(px1*py2-px2*py1)/2; } Circle CircleOfTriangle(Triangle t)//就三角形外接圆 { Circle tmp; double a=Len(t.v[0],t.v[1]); double b=Len(t.v[0],t.v[2]); double c=Len(t.v[1],t.v[2]); tmp.r=a*b*c/4/TriangleArea(t); double a1=t.v[1].x-t.v[0].x; double b1=t.v[1].y-t.v[0].y; double c1=(a1*a1+b1*b1)/2; double a2=t.v[2].x-t.v[0].x; double b2=t.v[2].y-t.v[0].y; double c2=(a2*a2+b2*b2)/2; double d=a1*b2-a2*b1; tmp.center.x=t.v[0].x+(c1*b2-c2*b1)/d; tmp.center.y=t.v[0].y+(a1*c2-a2*c1)/d; return tmp; } void Run(int n) { random_shuffle(p+1,p+n+1);//随机排序取点 int i,j,k; Circle tep; tep.center=p[1]; tep.r=0; for(i=2;i<=n;i++) { if(Len(p[i],tep.center)>tep.r+eps) { tep.center=p[i]; tep.r=0; for(j=1;j<i;j++) { if(Len(p[j],tep.center)>tep.r+eps) { tep.center.x=(p[i].x+p[j].x)/2; tep.center.y=(p[i].y+p[j].y)/2; tep.r=Len(p[i],p[j])/2; for(k=1;k<j;k++) { if(Len(p[k],tep.center)>tep.r+eps) { Triangle t; t.v[0]=p[i]; t.v[1]=p[j]; t.v[2]=p[k]; tep=CircleOfTriangle(t); } } } } } } printf("%.2lf %.2lf %.2lf\n",tep.center.x,tep.center.y,tep.r); } int main() { int n,i; while(scanf("%d",&n),n) { for(i=1;i<=n;i++) scanf("%lf%lf",&p[i].x,&p[i].y); Run(n); } }
方法二:模拟退火法:(hdu3932)
#include"string.h" #include"stdio.h" #include"queue" #include"stack" #include"vector" #include"algorithm" #include"iostream" #include"math.h" #include"stdlib.h" #define M 1009 #define inf 100000000 #define eps 1e-8 #define PI acos(-1.0) using namespace std; double X,Y; int n; struct Point { double x,y,dis; Point(){} Point(double xx,double yy){x=xx;y=yy;} bool check(){ if(x>0&&y>0&&x<X&&y<Y)return true; return false; } }p[M],q[50]; double pow(double x) { return x*x; } double Len(Point a,Point b) { return sqrt(pow(a.x-b.x)+pow(a.y-b.y)); } double fun(Point a) { double maxi=0; for(int i=1;i<=n;i++) { double L=Len(a,p[i]); if(maxi<L) maxi=L; } return maxi; } int main() { int i; while(scanf("%lf%lf%d",&X,&Y,&n)!=EOF) { for(i=1;i<=n;i++) scanf("%lf%lf",&p[i].x,&p[i].y); int po=15,est=15; for(int i=1;i<=po;i++) { q[i].x=(rand()%1000+1)/1000.0*X; q[i].y=(rand()%1000+1)/1000.0*Y; q[i].dis=fun(q[i]); } double temp=max(X,Y); while(temp>0.001) { for(int i=1;i<=po;i++) { for(int j=1;j<=est;j++) { double rad=(rand()%1000+1)/1000.0*PI*2; Point cur; cur.x=q[i].x+temp*cos(rad); cur.y=q[i].y+temp*sin(rad); if(!cur.check())continue; cur.dis=fun(cur); if(cur.dis<q[i].dis) q[i]=cur; } } temp*=0.8; } int id=1; for(int i=1;i<=po;i++) if(q[id].dis>q[i].dis) id=i; printf("(%.1lf,%.1lf).\n%.1lf\n",q[id].x,q[id].y,q[id].dis); } return 0; }