树链剖分+离散+扫描(HDU5044)
Tree
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1385 Accepted Submission(s): 237
Problem Description
You are given a tree (an acyclic undirected connected graph) with N nodes. The tree nodes are numbered from 1 to N
There are N - 1 edges numbered from 1 to N - 1.
Each node has a value and each edge has a value. The initial value is 0.
There are two kind of operation as follows:
● ADD1 u v k: for nodes on the path from u to v, the value of these nodes increase by k.
● ADD2 u v k: for edges on the path from u to v, the value of these edges increase by k.
After finished M operation on the tree, please output the value of each node and edge.
There are N - 1 edges numbered from 1 to N - 1.
Each node has a value and each edge has a value. The initial value is 0.
There are two kind of operation as follows:
● ADD1 u v k: for nodes on the path from u to v, the value of these nodes increase by k.
● ADD2 u v k: for edges on the path from u to v, the value of these edges increase by k.
After finished M operation on the tree, please output the value of each node and edge.
Input
The first line of the input is T (1 ≤ T ≤ 20), which stands for the number of test cases you need to solve.
The first line of each case contains two integers N ,M (1 ≤ N, M ≤105),denoting the number of nodes and operations, respectively.
The next N - 1 lines, each lines contains two integers u, v(1 ≤ u, v ≤ N ), denote there is an edge between u,v and its initial value is 0.
For the next M line, contain instructions “ADD1 u v k” or “ADD2 u v k”. (1 ≤ u, v ≤ N, -105 ≤ k ≤ 105)
The first line of each case contains two integers N ,M (1 ≤ N, M ≤105),denoting the number of nodes and operations, respectively.
The next N - 1 lines, each lines contains two integers u, v(1 ≤ u, v ≤ N ), denote there is an edge between u,v and its initial value is 0.
For the next M line, contain instructions “ADD1 u v k” or “ADD2 u v k”. (1 ≤ u, v ≤ N, -105 ≤ k ≤ 105)
Output
For each test case, print a line “Case #t:”(without quotes, t means the index of the test case) at the beginning.
The second line contains N integer which means the value of each node.
The third line contains N - 1 integer which means the value of each edge according to the input order.
The second line contains N integer which means the value of each node.
The third line contains N - 1 integer which means the value of each edge according to the input order.
Sample Input
2 4 2 1 2 2 3 2 4 ADD1 1 4 1 ADD2 3 4 2 4 2 1 2 2 3 1 4 ADD1 1 4 5 ADD2 3 2 4
Sample Output
Case #1: 1 1 0 1 0 2 2 Case #2: 5 0 0 5 0 4 0题意:给出一棵树,树上的点和边的权值开始都是0,有两种操作,对于第一种操作,ADD1:在u到v的路径上每个点的权值+w;对于第二种操作ADD2:在u到v的路径上每个边的权值+w;最后询问每个点的权值和每条边的权值(按照输入的顺序)分析:首先两个dfs进行轻重链剖分,然后对于每个区间[L,R],在L的位置+w,在R+1的位置-w,保存在g1数组中,同理,对于边也一样,保存在g2数组里,最后从前往后做一遍扫描即可;程序:#pragma comment(linker, "/STACK:1024000000,1024000000") #include"stdio.h" #include"string.h" #include"iostream" #include"map" #include"string" #include"queue" #include"stdlib.h" #include"algorithm" #include"math.h" #define M 110009 #define eps 1e-5 #define inf 100000000 #define mod 100000000 #define INF 0x3f3f3f3f using namespace std; struct node { int v; node(int vv){v=vv;} }; vector<node>edge[M]; int pos,son[M],fa[M],p[M],fp[M],deep[M],top[M],num[M],g1[M],g2[M],ans[M]; void dfs(int u,int f,int d) { deep[u]=d; fa[u]=f; num[1]=1; for(int i=0;i<(int)edge[u].size();i++) { int v=edge[u][i].v; if(v==f)continue; dfs(v,u,d+1); num[u]+=num[v]; if(son[u]==-1||num[son[u]]<son[v]) son[u]=v; } } void getpos(int u,int sp) { top[u]=sp; p[u]=pos++; fp[p[u]]=u; if(son[u]==-1)return; getpos(son[u],sp); for(int i=0;i<(int)edge[u].size();i++) { int v=edge[u][i].v; if(v==son[u]||v==fa[u])continue; getpos(v,v); } } void init() { pos=0; memset(son,-1,sizeof(son)); dfs(1,1,1); getpos(1,1); } void getnode(int u,int v,int d) { int f1=top[u]; int f2=top[v]; while(f1!=f2) { if(deep[f1]<deep[f2]) { swap(f1,f2); swap(u,v); } g1[p[f1]]+=d; g1[p[u]+1]-=d; u=fa[f1]; f1=top[u]; } if(u==v) { g1[p[u]]+=d; g1[p[u]+1]-=d; return; } if(deep[u]>deep[v])swap(u,v); g1[p[u]]+=d; g1[p[v]+1]-=d; return; } void getedge(int u,int v,int d) { int f1=top[u]; int f2=top[v]; while(f1!=f2) { if(deep[f1]<deep[f2]) { swap(f1,f2); swap(u,v); } g2[p[f1]]+=d; g2[p[u]+1]-=d; u=fa[f1]; f1=top[u]; } if(u==v) return; if(deep[u]>deep[v])swap(u,v); g2[p[son[u]]]+=d; g2[p[v]+1]-=d; return; } struct lede { int u,v; }e[M]; int main() { int T,m,n,i,u,v,w,kk=1; char ch[22]; cin>>T; while(T--) { scanf("%d%d",&n,&m); for(i=0;i<=n;i++) edge[i].clear(); for(i=1;i<n;i++) { scanf("%d%d",&u,&v); edge[u].push_back(v); edge[v].push_back(u); e[i].u=u; e[i].v=v; } init(); memset(g1,0,sizeof(g1)); memset(g2,0,sizeof(g2)); while(m--) { scanf("%s%d%d%d",ch,&u,&v,&w); if(strcmp(ch,"ADD1")==0) getnode(u,v,w); else getedge(u,v,w); } printf("Case #%d:\n",kk++); int sum=0; for(i=0;i<pos;i++) { sum+=g1[i]; ans[i]=sum; } for(i=1;i<=n;i++) { if(i==1) printf("%d",ans[p[i]]); else printf(" %d",ans[p[i]]); } printf("\n"); sum=0; for(i=1;i<pos;i++) { sum+=g2[i]; ans[i]=sum; } for(i=1;i<n;i++) { if(deep[e[i].u]<deep[e[i].v]) swap(e[i].u,e[i].v); if(i==1) printf("%d",ans[p[e[i].u]]); else printf(" %d",ans[p[e[i].u]]); } printf("\n"); } }