笛卡尔乘积的解释

设A,B为集合,用A中元素为第一元素,B中元素为第二元素构成有序对,所有这样的有序对组成的集合叫做A与B的笛卡尔积,记作AxB.
笛卡尔积的符号化为:
A×B={(x,y)|x∈A∧y∈B}
例如,A={a,b}, B={0,1,2},则
A×B={(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}
B×A={(0, a), (0, b), (1, a), (1, b), (2, a), (2, b)}
 
该公式里包含离散数学的专业符号
“∈”是数学中的一种符号。读作“属于”。若a∈A,则a属于集合A,a是集合A中的元素。数学上读此符号时,直接可以用“属于”这个词来表达。
 
∧,称为合取,就是逻辑与,例如:P∧Q 当且仅当P与Q同时为真(T)时,结果为真,其余全为假(F)

∨,称为析取,就是逻辑或,例如: P∨Q,当且仅当P与Q同时为F时,结果为假,其余全为真。

┐ 为逻辑非

 

posted @ 2018-08-10 16:19  猪啊美  阅读(2412)  评论(0编辑  收藏  举报