JVM垃圾收集器
2017-09-20 11:04 钰火 阅读(376) 评论(0) 编辑 收藏 举报1.垃圾回收器类型
- 并行垃圾回收器(Parallel Garbage Collector)
- 并发标记扫描垃圾回收器(CMS Garbage Collector)
- 4.
- G1垃圾回收器(G1 Garbage Collector)
![](https://images2017.cnblogs.com/blog/1217523/201709/1217523-20170920110410837-1454038967.png)
- 并行垃圾回收器(Parallel Garbage Collector)
- 并发标记扫描垃圾回收器(CMS Garbage Collector)
- 4.
- G1垃圾回收器(G1 Garbage Collector)
2.JVM垃圾收集器
![](https://images2017.cnblogs.com/blog/1217523/201709/1217523-20170920110411228-428940151.png)
![](https://images2017.cnblogs.com/blog/1217523/201709/1217523-20170920110411821-932961472.png)
ParNew垃圾收集器其实是Serial收集器的多线程版本,也使用复制算法,除了使用多线程进行垃圾收集之外,其余的行为和Serial收集器完全一样,ParNew垃圾收集器在垃圾收集过程中同样也要暂停所有其他的工作线程。
ParNew收集器默认开启和CPU数目相同的线程数,可以通过-XX:ParallelGCThreads参数来限制垃圾收集器的线程数。
ParNew虽然是除了多线程外和Serial收集器几乎完全一样,但是ParNew垃圾收集器是很多java虚拟机运行在Server模式下新生代的默认垃圾收集器。
CMS工作机制相比其他的垃圾收集器来说更复杂,整个过程分为以下4个阶段:
a.初始标记:只是标记一下GC Roots能直接关联的对象,速度很快,仍然需要暂停所有的工作线程。
b.并发标记:进行GC Roots跟踪的过程,和用户线程一起工作,不需要暂停工作线程。
c.重新标记:为了修正在并发标记期间,因用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,仍然需要暂停所有的工作线程。
d.并发清除:清除GC Roots不可达对象,和用户线程一起工作,不需要暂停工作线程。
由于耗时最长的并发标记和并发清除过程中,垃圾收集线程可以和用户现在一起并发工作,所以总体上来看CMS收集器的内存回收和用户线程是一起并发地执行。
CMS收集器有以下三个不足:
1. CMS收集器对CPU资源非常敏感,其默认启动的收集线程数=(CPU数量+3)/4,在用户程序本来CPU负荷已经比较高的情况下,如果还要分出CPU资源用来运行垃圾收集器线程,会使得CPU负载加重。
2. CMS无法处理浮动垃圾(Floating Garbage),可能会导致Concurrent Mode Failure失败而导致另一次Full GC。
3. CMS收集器是基于标记-清除算法,因此不可避免会产生大量不连续的内存碎片,如果无法找到一块足够大的连续内存存放对象时,将会触发因此Full GC。
Garbage first垃圾收集器是目前垃圾收集器理论发展的最前沿成果,相比与CMS收集器,G1收集器两个最突出的改进是:
a.基于标记-整理算法,不产生内存碎片。
b.可以非常精确控制停顿时间,在不牺牲吞吐量前提下,实现低停顿垃圾回收。
在G1中,堆被划分成 许多个连续的区域(region)。每个区域大小相等,在1M~32M之间。JVM最多支持2000个区域,可推算G1能支持的最大内存为2000*32M=62.5G。区域(region)的大小在JVM初始化的时候决定,也可以用-XX:G1HeapReginSize设置。在G1中没有物理上的Yong(Eden/Survivor)/Old Generation,它们是逻辑的,使用一些非连续的区域(Region)组成的。
- 绝大部分新生成的对象都放在Eden区,当Eden区将满,JVM会因申请不到内存,而触发Young GC ,进行Eden区+有对象的Survivor区(设为S0区)垃圾回收,把存活的对象用复制算法拷贝到一个空的Survivor(S1)中,此时Eden区被清空,另外一个Survivor S0也为空。下次触发Young GC回收Eden+S0,将存活对象拷贝到S1中。新生代垃圾回收简单、粗暴、高效。
- 若发现Survivor区满了,则将这些对象拷贝到old区或者Survivor没满但某些对象足够Old,也拷贝到Old区(每次Young GC都会使Survivor区存活对象值+1,直到阈值)。 3.Old区也会进行垃圾收集(Young GC),发生一次 Major GC 至少伴随一次Young GC,一般比Young GC慢十倍以上。
- JVM在Old区申请不到内存,会进行Full GC。Old区使用一般采用Concurrent-Mark–Sweep策略回收内存。
新生代GC策略 | 老年代GC策略 | 说明 | |
---|---|---|---|
组合1 | Serial | Serial Old | Serial和Serial Old都是单线程进行GC,特点就是GC时暂停所有应用线程。 |
组合2 | Serial | CMS+Serial Old | CMS(Concurrent Mark Sweep)是并发GC,实现GC线程和应用线程并发工作,不需要暂停所有应用线程。另外,当CMS进行GC失败时,会自动使用Serial Old策略进行GC。 |
组合3 | ParNew | CMS | 使用 -XX:+UseParNewGC 选项来开启。ParNew是Serial的并行版本,可以指定GC线程数,默认GC线程数为CPU的数量。可以使用-XX:ParallelGCThreads选项指定GC的线程数。如果指定了选项 -XX:+UseConcMarkSweepGC 选项,则新生代默认使用ParNew GC策略。 |
组合4 | ParNew | Serial Old | 使用 -XX:+UseParNewGC 选项来开启。新生代使用ParNew GC策略,年老代默认使用Serial Old GC策略。 |
组合5 | Parallel Scavenge | Serial Old | Parallel Scavenge策略主要是关注一个可控的吞吐量:应用程序运行时间 / (应用程序运行时间 + GC时间),可见这会使得CPU的利用率尽可能的高,适用于后台持久运行的应用程序,而不适用于交互较多的应用程序。 |
组合6 | Parallel Scavenge | Parallel Old | Parallel Old是Serial Old的并行版本 |
组合7 | G1GC | G1GC | -XX:+UnlockExperimentalVMOptions -XX:+UseG1GC #开启; -XX:MaxGCPauseMillis=50 #暂停时间目标; -XX:GCPauseIntervalMillis=200 #暂停间隔目标; -XX:+G1YoungGenSize=512m #年轻代大小; -XX:SurvivorRatio=6 #幸存区比例 |