深入理解KMP算法

 

KMP算法是一个从字符串A中查找字符串B的算法。

假设有字符串"ababababca",查找“abababca" ?

算法中定义一个部分匹配表(Partial Match Table,简称PMT)的数组,PMT就是是KMP算法的核心。

对于目标字符串“abababca" 的PMT如下图:

这里value,即pmt[index]的含义指的是字符串相同前缀后缀的最大长度。本文称这里的前缀和后缀为PMT前缀PMT后缀。比如上图 index = 3时,此时字符串”abab"的前缀有{“a","ab","aba"},后缀有{”bab","ab","b"},交集中长度最大的是“ab",即此时PMT前缀和PMT后缀都是”ab",长度为2;

为了方便计算,对于PMT还定义了next值,具体定义是:当index = 0 ,next[index] = -1;当index >0 ,next[j] = pmt[j-1]; next[0]=-1的巧妙之处在代码中有解释;

如下图:

 

现在开始进行匹配,i和j分别前文说的字符串A和B中下标,下图a中,i和j指向字符串A和B刚出现字符不匹配的位置,

i位置固定不动,考虑j,此时已匹配相同的部分是"ababab",它的pmt值为4,即pmt[j-1]=next[j]=4;接着就是j = next[j],让A[i]和B[j]继续进行比较;

 

 

 关于getNext方法有如下图解,图(a)起始位置注意错开一位,因为pmt不含自身。由next[i] = pmt[i-1](i >= 1),对下图a有next[2] = pmt[1] =0;

 

 

 

 1 public class KMP {
 2 
 3 
 4     public int KMP(String haystack,String needle) {
 5         if(haystack == null){
 6             throw new IllegalArgumentException("haystack is empty!");
 7         }
 8         if(needle == null || needle.trim().length() ==0){
 9             return 0;
10         }
11         char[] A = haystack.toCharArray();
12         char[] B = needle.toCharArray();
13         int[] next = getNext(B);
14 
15         int i = 0;
16         int j = 0;
17 
18         while (i < A.length && j < B.length) {
19             //j = -1,next[0]=-1, j = 0; A[i] != B[0],说明上一次B在初始位置与A[i]进行比对不成功,i向右移位一个位置,j=next[0]=-1,则巧妙地利用j++让j回到起始位置。
20             if (j == -1 || A[i] == (B[j])) {
21                 i++;
22                 j++;
23             } else {
24                 //位于A中i之前和B中j之前成功匹配的区段为PMT区段,A的PMT后缀与B的PMT前缀对齐,接下来继续比较A[i]和B[j];
25                 j = next[j];
26             }
27         }
28 
29         if (j == B.length) {
30             return i - j;
31         } else {
32             return -1;
33         }
34     }
35 
36     /**
37      * 求next数组这里,targetStr既是被考察字符串也是目标字符串;自己和自己进行匹配;
38      * <p>
39      * next[i] = pmt[i-1],
40      * 通俗点说,next[i]指的是targetStr[0,i-1]范围字符组成字符串的pmt值;
41      * @param targetStr
42      * @return
43      */
44     int[] getNext(char[] targetStr) {
45         int[] next = new int[targetStr.length];
46         next[0] = -1;
47         int i = 0, j = -1;//注意!求pmt时不包含自身,所以要错开一位
48 
49         while (i < targetStr.length - 1) {
50             if (j == -1 || targetStr[i] == (targetStr[j])) {
51                 //i向后移动一位
52                 ++i;
53                 //j==-1,回到初始位置;targetStr[i] == (targetStr[j]),j则向后移动一位
54                 ++j;
55                 //index在[1...targetStr.length -1]范围内next[index]满足,next[i + 1] = pmt[i] = j;
56                 //next[i] = pmt[i-1] = j;
57                 next[i] = j;
58             } else {
59                 j = next[j];
60             }
61         }
62         return next;
63     }

 

理解KMP算法高效的关键点

j = next[j];

上面代码中有这么一行代码,作用就是让被探查的已匹配成功区段的PMT后缀与目标字符串的PMT前缀对齐。如果PMT > 0 ,我们就可以跳过一些元素,那么为啥可以跳过呢?

 

 

参考上图,这里采用反证法证明。

被查询字符串是上面的”MISSISSIPPI“,目标字符串是"ISSIP",

黄色和粉色的方块分别表示朴素方式和KMP方式;对于朴素方式, P(绿)与S(蓝)不匹配,绿色指针将回到I(黄)位置与纵向对应位置的蓝色元素继续进行比对;对于KMP方式,绿色指针跳到S(粉)位置,蓝色元素的指针位置不对变,继续比对;

粉色相对黄色不在对位于PMT元素(红色填充的元素)之间的S S I 三个位置进行比对, 这三个元素为啥可以跳过呢?

第一个蓝色的S,姑且称之为S1,假设蓝色方阵S1位置开始能够与ISSIP进行完整匹配,那么S1到第二个红色I这一段必然与ISSIP的某一前缀相同,但是这与PMT值是I冲突,所以假设不成立!对于第二个S同理!

结论:对于被查询字符串,已匹配成功区段的PMT的前缀后缀之间的元素可以被跳过检测。

红色的I为啥能跳过呢?

这完全就是利用PMT特性,PMT前缀=PMT后缀,完全是平移对齐而已,也不必检测了。

 

 

 

 

 

 

 

 

 

 

 

 

 参考:https://www.zhihu.com/question/21923021/answer/281346746

posted on 2019-08-02 13:03  mylittlecabin  阅读(492)  评论(0编辑  收藏  举报

导航