1 /* 2 * TCP CUBIC: Binary Increase Congestion control for TCP v2.3 3 * Home page: 4 * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC 5 * This is from the implementation of CUBIC TCP in 6 * Sangtae Ha, Injong Rhee and Lisong Xu, 7 * "CUBIC: A New TCP-Friendly High-Speed TCP Variant" 8 * in ACM SIGOPS Operating System Review, July 2008. 9 * Available from: 10 * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf 11 * 12 * CUBIC integrates a new slow start algorithm, called HyStart. 13 * The details of HyStart are presented in 14 * Sangtae Ha and Injong Rhee, 15 * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008. 16 * Available from: 17 * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf 18 * 19 * All testing results are available from: 20 * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing 21 * 22 * Unless CUBIC is enabled and congestion window is large 23 * this behaves the same as the original Reno. 24 */ 25 26 #include <linux/mm.h> 27 #include <linux/module.h> 28 #include <linux/math64.h> 29 #include <net/tcp.h> 30 31 #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation 32 * max_cwnd = snd_cwnd * beta 33 */ 34 #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */ 35 36 /* Two methods of hybrid slow start */ 37 //Both run independently at the same time and slow start exits when any of them detects an exit point. 38 //1. ACK train length 39 //2. Delay increase 40 41 #define HYSTART_ACK_TRAIN 0x1 42 #define HYSTART_DELAY 0x2 43 /* 注意:这里的delay_min没有放大8倍! 44 * 此宏用来计算Delay increase threshold 45 * delay_min <= 32ms,则threshold = 2ms 46 * 32ms < delay_min < 256ms,则threshold = delay_min / 16 ms 47 * delay_min >= 256ms,则threshold = 16ms 48 */ 49 /* Number of delay samples for detecting the increase of delay */ 50 #define HYSTART_MIN_SAMPLES 8 51 #define HYSTART_DELAY_MIN (2U<<3) 52 #define HYSTART_DELAY_MAX (16U<<3) 53 #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX) 54 55 static int fast_convergence __read_mostly = 1; 56 static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */ 57 //beta在BIC中为819,而CUBIC中为717, 58 //会导致在bictcp_recalc_ssthresh中,并且启用了fast convergence, 59 //cubic: last_max_cwnd = 0.85*snd_cwnd ,而慢启动阈值=0.7*snd_cwnd 。 60 //bic: last_max_cwnd = 0.95*snd_cwnd ,而慢启动阈值=0.8*snd_cwnd 。 61 //这样会导致更早的到达平衡值,对snd_cwnd有很大的影响。 62 63 64 65 static int initial_ssthresh __read_mostly; 66 static int bic_scale __read_mostly = 41; 67 static int tcp_friendliness __read_mostly = 1; 68 69 70 71 //hybrid slow start的开关 72 static int hystart __read_mostly = 1; 73 //HyStart状态描述 74 //1:packet-train 2: delay 3:both packet-train and delay 75 //默认2种方法都使用,故设为3 76 static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY; 77 //设置snd_ssthresh的最小拥塞窗口值,除非cwnd超过了这个值,才能使用HyStart 78 static int hystart_low_window __read_mostly = 16; 79 80 static u32 cube_rtt_scale __read_mostly; 81 static u32 beta_scale __read_mostly; 82 static u64 cube_factor __read_mostly; 83 84 /* Note parameters that are used for precomputing scale factors are read-only */ 85 module_param(fast_convergence, int, 0644); 86 MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence"); 87 module_param(beta, int, 0644); 88 MODULE_PARM_DESC(beta, "beta for multiplicative increase"); 89 module_param(initial_ssthresh, int, 0644); 90 MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold"); 91 module_param(bic_scale, int, 0444); 92 MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)"); 93 module_param(tcp_friendliness, int, 0644); 94 MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness"); 95 module_param(hystart, int, 0644); 96 MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm"); 97 module_param(hystart_detect, int, 0644); 98 MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms" 99 " 1: packet-train 2: delay 3: both packet-train and delay"); 100 module_param(hystart_low_window, int, 0644); 101 MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start"); 102 103 /* BIC TCP Parameters */ 104 struct bictcp { 105 u32 cnt; /*用来控制snd_cwnd的增长 increase cwnd by 1 after ACKs */ 106 //两个重要的count值: 107 //第一个是tcp_sock->snd_cwnd_cnt,表示在当前的拥塞窗口中已经 108 //发送(经过对方ack包确认)的数据段的个数, 109 //而第二个是bictcp->cnt,它是cubic拥塞算法的核心, 110 //主要用来控制在拥塞避免状态的时候,什么时候才能增大拥塞窗口, 111 //具体实现是通过比较cnt和snd_cwnd_cnt,来决定是否增大拥塞窗口, 112 113 u32 last_max_cwnd; /*上一次的最大拥塞窗口值 last maximum snd_cwnd */ 114 u32 loss_cwnd; /* 拥塞状态切换时的拥塞窗口值congestion window at last loss */ 115 u32 last_cwnd; /* 上一次的拥塞窗口值 the last snd_cwnd */ 116 u32 last_time; /* time when updated last_cwnd */ 117 u32 bic_origin_point;/*即新的Wmax饱和点,取Wlast_max_cwnd和snd_cwnd较大者 origin point of bic function */ 118 u32 bic_K; /*即新Wmax所对应的时间点t,W(bic_K) = Wmax time to origin point from the beginning of the current epoch */ 119 u32 delay_min; /*应该是最小RTT min delay */ 120 u32 epoch_start; /*拥塞状态切换开始的时刻 beginning of an epoch */ 121 u32 ack_cnt; /*在一个epoch中的ack包的数量 number of acks */ 122 u32 tcp_cwnd; /*按照Reno算法计算得的cwnd estimated tcp cwnd */ 123 #define ACK_RATIO_SHIFT 4 124 u16 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */ 125 u8 sample_cnt; /*第几个sample number of samples to decide curr_rtt */ 126 u8 found; /* the exit point is found? */ 127 u32 round_start; /*针对每个RTT beginning of each round */ 128 u32 end_seq; /*用来标识每个RTT end_seq of the round */ 129 u32 last_jiffies; /*超过2ms则不认为是连续的 last time when the ACK spacing is close */ 130 u32 curr_rtt; /*由sampe中最小的决定 the minimum rtt of current round */ 131 }; 132 133 static inline void bictcp_reset(struct bictcp *ca) 134 {//论文说Time out时调用 135 ca->cnt = 0; 136 ca->last_max_cwnd = 0; 137 ca->loss_cwnd = 0; 138 ca->last_cwnd = 0; 139 ca->last_time = 0; 140 ca->bic_origin_point = 0; 141 ca->bic_K = 0; 142 ca->delay_min = 0; 143 ca->epoch_start = 0; 144 ca->delayed_ack = 2 << ACK_RATIO_SHIFT; 145 ca->ack_cnt = 0; 146 ca->tcp_cwnd = 0; 147 ca->found = 0; 148 } 149 150 static inline void bictcp_hystart_reset(struct sock *sk) 151 { 152 struct tcp_sock *tp = tcp_sk(sk); 153 struct bictcp *ca = inet_csk_ca(sk); 154 155 ca->round_start = ca->last_jiffies = jiffies;//记录时间戳 156 ca->end_seq = tp->snd_nxt;//记录待发送的下一个序列号 157 ca->curr_rtt = 0; 158 ca->sample_cnt = 0; 159 160 //bictcp_hystart_reset中并没有对ca->found置0。 161 //也就是说,只有在初始化时、LOSS状态时、开启hystart的慢启动时。 162 //HyStart才会派上用场,其它时间并不使用. 163 } 164 165 static void bictcp_init(struct sock *sk) 166 { 167 bictcp_reset(inet_csk_ca(sk)); 168 169 if (hystart)//如果指定hystart 170 bictcp_hystart_reset(sk); 171 172 if (!hystart && initial_ssthresh) 173 tcp_sk(sk)->snd_ssthresh = initial_ssthresh; 174 } 175 176 /* calculate the cubic root of x using a table lookup followed by one 177 * Newton-Raphson iteration. 178 * Avg err ~= 0.195% 179 */ 180 static u32 cubic_root(u64 a) //用来计算立方根 181 { 182 u32 x, b, shift; 183 /* 184 * cbrt(x) MSB values for x MSB values in [0..63]. 185 * Precomputed then refined by hand - Willy Tarreau 186 * 187 * For x in [0..63], 188 * v = cbrt(x << 18) - 1 189 * cbrt(x) = (v[x] + 10) >> 6 190 */ 191 static const u8 v[] = { 192 /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118, 193 /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156, 194 /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179, 195 /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199, 196 /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215, 197 /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229, 198 /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242, 199 /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254, 200 }; 201 202 b = fls64(a); 203 if (b < 7) { 204 /* a in [0..63] */ 205 return ((u32)v[(u32)a] + 35) >> 6; 206 } 207 208 b = ((b * 84) >> 8) - 1; 209 shift = (a >> (b * 3)); 210 211 x = ((u32)(((u32)v[shift] + 10) << b)) >> 6; 212 213 /* 214 * Newton-Raphson iteration 215 * 2 216 * x = ( 2 * x + a / x ) / 3 217 * k+1 k k 218 */ 219 x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1))); 220 x = ((x * 341) >> 10); 221 return x; 222 } 223 224 /* 225 * Compute congestion window to use. 226 */ //从快速恢复退出并进入拥塞避免状态之后,更新cnt 227 static inline void bictcp_update(struct bictcp *ca, u32 cwnd) 228 { 229 u64 offs;//时间差|t - K| 230 //delta是cwnd差,bic_target是预测值,t为预测时间 231 u32 delta, t, bic_target, max_cnt; 232 233 ca->ack_cnt++; /*ack包计数器加1 count the number of ACKs */ 234 235 if (ca->last_cwnd == cwnd && //当前窗口与历史窗口相同 236 (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)//时间差小于1000/32ms 237 return; //直接结束 238 239 ca->last_cwnd = cwnd;//记录进入拥塞避免时的窗口值 240 ca->last_time = tcp_time_stamp;//记录进入拥塞避免时的时刻 241 242 if (ca->epoch_start == 0) {//丢包后,开启一个新的时段 243 ca->epoch_start = tcp_time_stamp; /*新时段的开始 record the beginning of an epoch */ 244 ca->ack_cnt = 1; /*ack包计数器初始化 start counting */ 245 ca->tcp_cwnd = cwnd; /*同步更新 syn with cubic */ 246 247 //取max(last_max_cwnd , cwnd)作为当前Wmax饱和点 248 if (ca->last_max_cwnd <= cwnd) { 249 ca->bic_K = 0; 250 ca->bic_origin_point = cwnd; 251 } else { 252 /* Compute new K based on 253 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ) 254 */ 255 ca->bic_K = cubic_root(cube_factor 256 * (ca->last_max_cwnd - cwnd)); 257 ca->bic_origin_point = ca->last_max_cwnd; 258 } 259 } 260 261 /* cubic function - calc*/ 262 /* calculate c * time^3 / rtt, 263 * while considering overflow in calculation of time^3 264 * (so time^3 is done by using 64 bit) 265 * and without the support of division of 64bit numbers 266 * (so all divisions are done by using 32 bit) 267 * also NOTE the unit of those veriables 268 * time = (t - K) / 2^bictcp_HZ 269 * c = bic_scale >> 10 == 0.04 270 * rtt = (srtt >> 3) / HZ 271 * !!! The following code does not have overflow problems, 272 * if the cwnd < 1 million packets !!! 273 */ 274 275 /* change the unit from HZ to bictcp_HZ */ 276 t = ((tcp_time_stamp + (ca->delay_min>>3) - ca->epoch_start) 277 << BICTCP_HZ) / HZ; 278 279 //求| t - bic_K | 280 if (t < ca->bic_K) // 还未达到Wmax 281 offs = ca->bic_K - t; 282 else 283 offs = t - ca->bic_K;//已经超过Wmax 284 285 /* c/rtt * (t-K)^3 */ //计算立方,delta =| W(t) - W(bic_K) | 286 delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ); 287 288 289 290 //t为预测时间,bic_K为新Wmax所对应的时间, 291 //bic_target为cwnd预测值,bic_origin_point为当前Wmax饱和点 292 if (t < ca->bic_K) /* below origin*/ 293 bic_target = ca->bic_origin_point - delta; 294 else /* above origin*/ 295 bic_target = ca->bic_origin_point + delta; 296 297 /* cubic function - calc bictcp_cnt*/ 298 if (bic_target > cwnd) {// 相差越多,增长越快,这就是函数形状由来 299 ca->cnt = cwnd / (bic_target - cwnd);// 300 } else {//目前cwnd已经超出预期了,应该降速 301 ca->cnt = 100 * cwnd; /* very small increment*/ 302 } 303 304 305 306 /* TCP Friendly —如果bic比RENO慢,则提升cwnd增长速度,即减小cnt 307 * 以上次丢包以后的时间t算起,每次RTT增长 3B / ( 2 - B),那么可以得到 308 * 采用RENO算法的cwnd。 309 * cwnd (RENO) = cwnd + 3B / (2 - B) * ack_cnt / cwnd 310 * B为乘性减少因子,在此算法中为0.3 311 */ 312 if (tcp_friendliness) { 313 u32 scale = beta_scale; 314 delta = (cwnd * scale) >> 3; //delta代表多少ACK可使tcp_cwnd++ 315 while (ca->ack_cnt > delta) { /* update tcp cwnd */ 316 ca->ack_cnt -= delta; 317 ca->tcp_cwnd++; 318 } 319 320 if (ca->tcp_cwnd > cwnd){ /* if bic is slower than tcp */ 321 delta = ca->tcp_cwnd - cwnd; 322 max_cnt = cwnd / delta; 323 if (ca->cnt > max_cnt) 324 ca->cnt = max_cnt; 325 } 326 } 327 328 ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack; 329 if (ca->cnt == 0) /* cannot be zero */ 330 ca->cnt = 1; //此时代表cwnd远小于bic_target,增长速度最大 331 } 332 333 static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 334 { 335 struct tcp_sock *tp = tcp_sk(sk); 336 struct bictcp *ca = inet_csk_ca(sk); 337 338 //判断发送拥塞窗口是否到达限制,如果到达限制则直接返回。 339 if (!tcp_is_cwnd_limited(sk, in_flight)) 340 return; 341 342 if (tp->snd_cwnd <= tp->snd_ssthresh) { 343 //当snd_cwnd<=ssthresh的时候,进入慢启动状态 344 if (hystart && after(ack, ca->end_seq))//是否需要reset对应的bictcp的值 345 bictcp_hystart_reset(sk); 346 tcp_slow_start(tp);//进入slow start状态 347 } else { 348 //当snd_cwnd>ssthresh的时候,进入拥塞避免状态 349 bictcp_update(ca, tp->snd_cwnd);//首先会更新bictcp->cnt 350 tcp_cong_avoid_ai(tp, ca->cnt);//然后进入拥塞避免,更新tcp_sock->snd_cwnd_cnt 351 } 352 353 } 354 355 356 //每次发生拥塞状态切换时,就会重新计算慢启动阈值 357 //做了两件事:重赋值last_max_cwnd、返回新的慢启动阈值 358 static u32 bictcp_recalc_ssthresh(struct sock *sk) 359 {//论文说这个函数在Packet loss时调用 360 const struct tcp_sock *tp = tcp_sk(sk); 361 struct bictcp *ca = inet_csk_ca(sk); 362 363 ca->epoch_start = 0; /* 发生拥塞状态切换,标志一个epoch结束 end of epoch */ 364 365 /* Wmax and fast convergence */ 366 //当一个新的TCP流加入到网络, 367 //网络中已有TCP流需要放弃自己带宽, 368 //给新的TCP流提供一定的上升空间。 369 //为提高已有TCP流所释放的带宽而引入快速收敛机制。 370 if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence) 371 //snd_cwnd<last_max_cwnd 372 //表示已有TCP流所经历的饱和点因为可用带宽改变而正在降低。 373 //然后,通过进一步降低Wmax让已有流释放更多带宽。 374 //这种行为有效地延长已有流增大其窗口的时间, 375 //因为降低后的Wmax强制已有流更早进入平稳状态。 376 //这允许新流有更多的时间来赶上其窗口尺寸。 377 ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta)) 378 / (2 * BICTCP_BETA_SCALE); //last_max_cwnd = 0.9 * snd_cwnd 379 else 380 ca->last_max_cwnd = tp->snd_cwnd; 381 382 ca->loss_cwnd = tp->snd_cwnd; 383 384 //修改snd_ssthresh,即max(0.7*snd_cwnd,2) 385 return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U); 386 387 } 388 389 static u32 bictcp_undo_cwnd(struct sock *sk) 390 { 391 struct bictcp *ca = inet_csk_ca(sk); 392 393 return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd); 394 } 395 396 static void bictcp_state(struct sock *sk, u8 new_state) 397 { 398 if (new_state == TCP_CA_Loss) {//如果处于LOSS状态,丢包处理 399 bictcp_reset(inet_csk_ca(sk)); 400 bictcp_hystart_reset(sk); 401 } 402 } 403 404 static void hystart_update(struct sock *sk, u32 delay) 405 {//会修改snd_ssthresh 406 struct tcp_sock *tp = tcp_sk(sk); 407 struct bictcp *ca = inet_csk_ca(sk); 408 409 if (!(ca->found & hystart_detect)) { 410 u32 curr_jiffies = jiffies; 411 412 /* first detection parameter - ack-train detection */ 413 if (curr_jiffies - ca->last_jiffies <= msecs_to_jiffies(2)) { 414 ca->last_jiffies = curr_jiffies; 415 if (curr_jiffies - ca->round_start >= ca->delay_min>>4) 416 ca->found |= HYSTART_ACK_TRAIN; 417 } 418 419 /* obtain the minimum delay of more than sampling packets */ 420 if (ca->sample_cnt < HYSTART_MIN_SAMPLES) { 421 if (ca->curr_rtt == 0 || ca->curr_rtt > delay) 422 ca->curr_rtt = delay; 423 424 ca->sample_cnt++; 425 } else { 426 if (ca->curr_rtt > ca->delay_min + 427 HYSTART_DELAY_THRESH(ca->delay_min>>4)) 428 ca->found |= HYSTART_DELAY; 429 } 430 /* 431 * Either one of two conditions are met, 432 * we exit from slow start immediately. 433 */ 434 if (ca->found & hystart_detect)//found是一个是否退出slow start的标记 435 tp->snd_ssthresh = tp->snd_cwnd;//修改snd_ssthresh 436 } 437 } 438 439 /* Track delayed acknowledgment ratio using sliding window 440 * ratio = (15*ratio + sample) / 16 441 */ //基本每次收到ack都会调用这个函数,更新snd_ssthresh和delayed_ack 442 static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us) 443 {//论文说这个函数在On each ACK时调用 444 const struct inet_connection_sock *icsk = inet_csk(sk); 445 const struct tcp_sock *tp = tcp_sk(sk); 446 struct bictcp *ca = inet_csk_ca(sk); 447 u32 delay; 448 449 if (icsk->icsk_ca_state == TCP_CA_Open) { 450 cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT; 451 ca->delayed_ack += cnt; 452 } 453 454 /* Some calls are for duplicates without timetamps */ 455 if (rtt_us < 0) 456 return; 457 458 /* Discard delay samples right after fast recovery */ 459 if ((s32)(tcp_time_stamp - ca->epoch_start) < HZ) 460 return; 461 462 delay = usecs_to_jiffies(rtt_us) << 3; 463 if (delay == 0) 464 delay = 1; 465 466 /* first time call or link delay decreases */ 467 if (ca->delay_min == 0 || ca->delay_min > delay) 468 ca->delay_min = delay; 469 470 /* hystart triggers when cwnd is larger than some threshold */ 471 //tp->snd_ssthresh初始值是一个很大的值0x7fffffff 472 473 //当拥塞窗口增大到16的时候, 474 //调用hystart_update来修改更新snd_ssthresh 475 //hystart_update主要用于是否退出slow start 476 if (hystart && tp->snd_cwnd <= tp->snd_ssthresh && 477 tp->snd_cwnd >= hystart_low_window) 478 hystart_update(sk, delay); 479 } 480 481 static struct tcp_congestion_ops cubictcp = { 482 483 .init = bictcp_init, 484 485 486 //调用ssthresh函数的地方有:tcp_fastretrans_alert(), tcp_enter_cwr(),tcp_enter_frto(), tcp_enter_loss() 487 //看起来每次发生拥塞状态切换的时候,都会调整ssthresh。 488 //修改snd_ssthresh值的地方有bictcp_init,hystart_update以及上面列出的调用ssthresh函数处。 489 .ssthresh = bictcp_recalc_ssthresh, 490 491 //发送方发出一个data包之后,接收方回复一个ack包,发送方收到这个ack包之后, 492 //调用tcp_ack()->tcp_cong_avoid()->bictcp_cong_avoid()来更改拥塞窗口snd_cwnd大小. 493 .cong_avoid = bictcp_cong_avoid, 494 495 .set_state = bictcp_state, 496 497 //调用undo_cwnd函数的地方有:tcp_undo_cwr()用来撤销之前误判导致的"缩小拥塞窗口" 498 .undo_cwnd = bictcp_undo_cwnd, 499 500 //调用ptts_acked函数的路径为:tcp_ack() -->tcp_clean_rtx_queue() 501 .pkts_acked = bictcp_acked, 502 503 .owner = THIS_MODULE, 504 .name = "cubic", 505 }; 506 507 static int __init cubictcp_register(void) 508 { 509 //bictcp参数的个数不能过多 510 BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE); 511 512 /* Precompute a bunch of the scaling factors that are used per-packet 513 * based on SRTT of 100ms 514 */ 515 //beta_scale == 8*(1024 + 717) / 3 / (1024 -717 ),大约为15 516 beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta); 517 518 //cube_rtt_scale == 41*10 = 410 519 cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */ 520 521 /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3 522 * so K = cubic_root( (wmax-cwnd)*rtt/c ) 523 * the unit of K is bictcp_HZ=2^10, not HZ 524 * 525 * c = bic_scale >> 10 526 * rtt = 100ms 527 * 528 * the following code has been designed and tested for 529 * cwnd < 1 million packets 530 * RTT < 100 seconds 531 * HZ < 1,000,00 (corresponding to 10 nano-second) 532 */ 533 534 /* 1/c * 2^2*bictcp_HZ * srtt */ 535 cube_factor = 1ull << (10+3*BICTCP_HZ); /* cube_factor == 2^40 */ 536 537 /* divide by bic_scale and by constant Srtt (100ms) */ 538 do_div(cube_factor, bic_scale * 10);//cube_factor == 2^40 / 410 539 540 return tcp_register_congestion_control(&cubictcp); 541 } 542 543 static void __exit cubictcp_unregister(void) 544 { 545 tcp_unregister_congestion_control(&cubictcp); 546 } 547 548 module_init(cubictcp_register); 549 module_exit(cubictcp_unregister); 550 551 MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger"); 552 MODULE_LICENSE("GPL"); 553 MODULE_DESCRIPTION("CUBIC TCP"); 554 MODULE_VERSION("2.3");