mylinuxer

  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

l3fwd负责三层转发,比l2fwd要复杂点。

   1 /*-
   2  *   BSD LICENSE
   3  *
   4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
   5  *   All rights reserved.
   6  *
   7  *   Redistribution and use in source and binary forms, with or without
   8  *   modification, are permitted provided that the following conditions
   9  *   are met:
  10  *
  11  *     * Redistributions of source code must retain the above copyright
  12  *       notice, this list of conditions and the following disclaimer.
  13  *     * Redistributions in binary form must reproduce the above copyright
  14  *       notice, this list of conditions and the following disclaimer in
  15  *       the documentation and/or other materials provided with the
  16  *       distribution.
  17  *     * Neither the name of Intel Corporation nor the names of its
  18  *       contributors may be used to endorse or promote products derived
  19  *       from this software without specific prior written permission.
  20  *
  21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  32  */
  33 
  34 #include <stdio.h>
  35 #include <stdlib.h>
  36 #include <stdint.h>
  37 #include <inttypes.h>
  38 #include <sys/types.h>
  39 #include <string.h>
  40 #include <sys/queue.h>
  41 #include <stdarg.h>
  42 #include <errno.h>
  43 #include <getopt.h>
  44 
  45 #include <rte_common.h>
  46 #include <rte_vect.h>
  47 #include <rte_byteorder.h>
  48 #include <rte_log.h>
  49 #include <rte_memory.h>
  50 #include <rte_memcpy.h>
  51 #include <rte_memzone.h>
  52 #include <rte_eal.h>
  53 #include <rte_per_lcore.h>
  54 #include <rte_launch.h>
  55 #include <rte_atomic.h>
  56 #include <rte_cycles.h>
  57 #include <rte_prefetch.h>
  58 #include <rte_lcore.h>
  59 #include <rte_per_lcore.h>
  60 #include <rte_branch_prediction.h>
  61 #include <rte_interrupts.h>
  62 #include <rte_pci.h>
  63 #include <rte_random.h>
  64 #include <rte_debug.h>
  65 #include <rte_ether.h>
  66 #include <rte_ethdev.h>
  67 #include <rte_ring.h>
  68 #include <rte_mempool.h>
  69 #include <rte_mbuf.h>
  70 #include <rte_ip.h>
  71 #include <rte_tcp.h>
  72 #include <rte_udp.h>
  73 #include <rte_string_fns.h>
  74 
  75 #define APP_LOOKUP_EXACT_MATCH          0
  76 #define APP_LOOKUP_LPM                  1
  77 #define DO_RFC_1812_CHECKS
  78 
  79 #ifndef APP_LOOKUP_METHOD  //默认使用LPM来路由
  80 #define APP_LOOKUP_METHOD             APP_LOOKUP_LPM
  81 #endif
  82 
  83 /*
  84  *  0表示未优化           When set to zero, simple forwaring path is eanbled.
  85  *  1表示优化             When set to one, optimized forwarding path is enabled.
  86  *  LPM会用到SSE4.1特性   Note that LPM optimisation path uses SSE4.1 instructions.
  87  *  注意: 发现深圳测试机的CPU支持的是SSE 4.2特性,不知道会不会有影响呢???
  88  */
  89 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && !defined(__SSE4_1__))
  90 #define ENABLE_MULTI_BUFFER_OPTIMIZE    0  
  91 #else
  92 #define ENABLE_MULTI_BUFFER_OPTIMIZE    1
  93 #endif
  94 
  95 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
  96 #include <rte_hash.h>
  97 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
  98 #include <rte_lpm.h>
  99 #include <rte_lpm6.h>
 100 #else
 101 #error "APP_LOOKUP_METHOD set to incorrect value"
 102 #endif
 103 
 104 #ifndef IPv6_BYTES
 105 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
 106                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
 107 #define IPv6_BYTES(addr) \
 108     addr[0],  addr[1], addr[2],  addr[3], \
 109     addr[4],  addr[5], addr[6],  addr[7], \
 110     addr[8],  addr[9], addr[10], addr[11],\
 111     addr[12], addr[13],addr[14], addr[15]
 112 #endif
 113 
 114 
 115 #define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1
 116 
 117 #define MAX_JUMBO_PKT_LEN  9600
 118 
 119 #define IPV6_ADDR_LEN 16
 120 
 121 #define MEMPOOL_CACHE_SIZE 256
 122 
 123 #define MBUF_SIZE (2048 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM)
 124 
 125 /*
 126  * This expression is used to calculate the number of mbufs needed depending on user input, taking
 127  *  into account memory for rx and tx hardware rings, cache per lcore and mtable per port per lcore.
 128  *  RTE_MAX is used to ensure that NB_MBUF never goes below a minimum value of 8192
 129  */
 130 
 131 #define NB_MBUF RTE_MAX    (                                                                    \
 132                 (nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT +                            \
 133                 nb_ports*nb_lcores*MAX_PKT_BURST +                                            \
 134                 nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT +                                \
 135                 nb_lcores*MEMPOOL_CACHE_SIZE),                                                \
 136                 (unsigned)8192)
 137 
 138 #define MAX_PKT_BURST     32
 139 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
 140 
 141 /*
 142  * Try to avoid TX buffering if we have at least MAX_TX_BURST packets to send.
 143  */
 144 #define    MAX_TX_BURST    (MAX_PKT_BURST / 2)
 145 
 146 #define NB_SOCKETS 8
 147 
 148 /* Configure how many packets ahead to prefetch, when reading packets */
 149 #define PREFETCH_OFFSET    3
 150 
 151 /* Used to mark destination port as 'invalid'. */
 152 #define    BAD_PORT    ((uint16_t)-1)
 153 
 154 #define FWDSTEP    4
 155 
 156 /*
 157  * Configurable number of RX/TX ring descriptors
 158  */
 159 #define RTE_TEST_RX_DESC_DEFAULT 128
 160 #define RTE_TEST_TX_DESC_DEFAULT 512
 161 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
 162 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
 163 
 164 /* ethernet addresses of ports */
 165 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
 166 
 167 static __m128i val_eth[RTE_MAX_ETHPORTS];
 168 
 169 /* replace first 12B of the ethernet header. */
 170 #define    MASK_ETH    0x3f
 171 
 172 /* mask of enabled ports */
 173 static uint32_t enabled_port_mask = 0;
 174 static int promiscuous_on = 0; /**< Ports set in promiscuous mode off by default. */
 175 static int numa_on = 1; /**< NUMA is enabled by default. */
 176 
 177 
 178 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
 179 static int ipv6 = 0; /**< ipv6 is false by default. */
 180 #endif
 181 
 182 struct mbuf_table {
 183     uint16_t len;  //实际个数???
 184     struct rte_mbuf *m_table[MAX_PKT_BURST];
 185 };
 186 
 187 struct lcore_rx_queue {
 188     uint8_t port_id; //物理端口的编号
 189     uint8_t queue_id;//网卡队列的编号
 190 } __rte_cache_aligned;
 191 
 192 #define MAX_RX_QUEUE_PER_LCORE 16  //每个lcore上最多有16个接收队列
 193 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS //每个物理端口上最多32个发送队列
 194 #define MAX_RX_QUEUE_PER_PORT 128  //每个物理端口上最多128个接收队列
 195 
 196 #define MAX_LCORE_PARAMS 1024
 197 struct lcore_params {
 198     uint8_t port_id; //物理端口的编号
 199     uint8_t queue_id; //网卡队列的编号
 200     uint8_t lcore_id; //lcore的编号
 201 } __rte_cache_aligned;
 202 
 203 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];//最大1024
 204 
 205        //此处可以修改lcore的默认配置
 206 static struct lcore_params lcore_params_array_default[] = {
 207     {0, 0, 2},//物理端口的编号,网卡队列的编号,lcore的编号
 208     {0, 1, 2},
 209     {0, 2, 2},
 210     {1, 0, 2},
 211     {1, 1, 2},
 212     {1, 2, 2},
 213     {2, 0, 2},
 214     {3, 0, 3},
 215     {3, 1, 3},
 216 };
 217 
 218 static struct lcore_params * lcore_params = lcore_params_array_default;
 219 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
 220                 sizeof(lcore_params_array_default[0]);//默认值为9
 221 
 222 static struct rte_eth_conf port_conf = {
 223     .rxmode = {
 224         .mq_mode = ETH_MQ_RX_RSS,  //看起来l3fwd支持RSS哟
 225         .max_rx_pkt_len = ETHER_MAX_LEN,
 226         .split_hdr_size = 0,
 227         .header_split   = 0, /**< Header Split disabled */
 228         .hw_ip_checksum = 1, /**< IP checksum offload enabled */
 229         .hw_vlan_filter = 0, /**< VLAN filtering disabled */
 230         .jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
 231         .hw_strip_crc   = 0, /**< CRC stripped by hardware */
 232     },
 233     .rx_adv_conf = {
 234         .rss_conf = {
 235             .rss_key = NULL,
 236             .rss_hf = ETH_RSS_IP,
 237         },
 238     },
 239     .txmode = {
 240         .mq_mode = ETH_MQ_TX_NONE,
 241     },
 242 };
 243 
 244 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
 245 
 246 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
 247 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
 248 #include <rte_hash_crc.h>
 249 #define DEFAULT_HASH_FUNC rte_hash_crc
 250 #else
 251 #include <rte_jhash.h>
 252 #define DEFAULT_HASH_FUNC       rte_jhash
 253 #endif
 254 struct ipv4_5tuple { //五元组        
 255 uint32_t ip_dst;  //目的ip地址        
 256 uint32_t ip_src;  //源ip地址        
 257 uint16_t port_dst;  //目的端口号        
 258 uint16_t port_src;  //源端口号        
 259 uint8_t  proto; //传输层协议类型
 260 } __attribute__((__packed__));
 261 union ipv4_5tuple_host {    
 262     struct {        
 263         uint8_t  pad0;        
 264         uint8_t  proto;        
 265         uint16_t pad1;        
 266         uint32_t ip_src;        
 267         uint32_t ip_dst;        
 268         uint16_t port_src;        
 269         uint16_t port_dst;    
 270     };    
 271     __m128i xmm;
 272 };
 273 
 274 #define XMM_NUM_IN_IPV6_5TUPLE 3
 275 struct ipv6_5tuple {        
 276     uint8_t  ip_dst[IPV6_ADDR_LEN];        
 277     uint8_t  ip_src[IPV6_ADDR_LEN];        
 278     uint16_t port_dst;        
 279     uint16_t port_src;        
 280     uint8_t  proto;
 281     } __attribute__((__packed__));
 282 union ipv6_5tuple_host {    
 283     struct {        
 284         uint16_t pad0;        
 285         uint8_t  proto;        
 286         uint8_t  pad1;        
 287         uint8_t  ip_src[IPV6_ADDR_LEN];        
 288         uint8_t  ip_dst[IPV6_ADDR_LEN];        
 289         uint16_t port_src;        
 290         uint16_t port_dst;        
 291         uint64_t reserve;    
 292     };    
 293     __m128i xmm[XMM_NUM_IN_IPV6_5TUPLE];
 294 };
 295 struct ipv4_l3fwd_route {    
 296     struct ipv4_5tuple key;    
 297     uint8_t if_out;
 298 };
 299 struct ipv6_l3fwd_route {    
 300     struct ipv6_5tuple key;    u
 301         int8_t if_out;
 302 };
 303 //这里设置默认的静态的三层转发路由规则,实际使用的时候需要修改这个地方     
 304 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {    
 305     {{IPv4(101,0,0,0), IPv4(100,10,0,1),  101, 11, IPPROTO_TCP}, 0},    
 306     {{IPv4(201,0,0,0), IPv4(200,20,0,1),  102, 12, IPPROTO_TCP}, 1},    
 307     {{IPv4(111,0,0,0), IPv4(100,30,0,1),  101, 11, IPPROTO_TCP}, 2},    
 308     {{IPv4(211,0,0,0), IPv4(200,40,0,1),  102, 12, IPPROTO_TCP}, 3},
 309 };
 310 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {    
 311     {{    {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},    
 312         {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},    
 313         101, 11, IPPROTO_TCP}, 0},    
 314         {{    {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},    
 315         {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},    
 316         102, 12, IPPROTO_TCP}, 1},    
 317         {{    {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},    
 318         {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},    
 319         101, 11, IPPROTO_TCP}, 2},    
 320         {{    {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},    
 321         {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},    
 322         102, 12, IPPROTO_TCP}, 3},
 323     };
 324 typedef struct rte_hash lookup_struct_t;
 325 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
 326 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
 327 #ifdef RTE_ARCH_X86_64
 328 /* default to 4 million hash entries (approx) */
 329 #define L3FWD_HASH_ENTRIES        1024*1024*4
 330 #else
 331 /* 32-bit has less address-space for hugepage memory, limit to 1M entries */
 332 #define L3FWD_HASH_ENTRIES        1024*1024*1
 333 #endif
 334 #define HASH_ENTRY_NUMBER_DEFAULT    4
 335 static uint32_t hash_entry_number = HASH_ENTRY_NUMBER_DEFAULT;
 336 static inline uint32_tipv4_hash_crc(const void *data, 
 337     __rte_unused uint32_t data_len,        uint32_t init_val){    
 338     const union ipv4_5tuple_host *k;    
 339     uint32_t t;    const uint32_t *p;    
 340     k = data;    
 341     t = k->proto;    
 342     p = (const uint32_t *)&k->port_src;
 343     #ifdef RTE_MACHINE_CPUFLAG_SSE4_2    
 344     init_val = rte_hash_crc_4byte(t, init_val);    
 345     init_val = rte_hash_crc_4byte(k->ip_src, init_val);    
 346     init_val = rte_hash_crc_4byte(k->ip_dst, init_val);    
 347     init_val = rte_hash_crc_4byte(*p, init_val);
 348     #else /* RTE_MACHINE_CPUFLAG_SSE4_2 */    
 349     init_val = rte_jhash_1word(t, init_val);    
 350     init_val = rte_jhash_1word(k->ip_src, init_val);    
 351     init_val = rte_jhash_1word(k->ip_dst, init_val);    
 352     init_val = rte_jhash_1word(*p, init_val);
 353     #endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */    
 354     return (init_val);
 355 }
 356 static inline uint32_tipv6_hash_crc(const void *data, 
 357     __rte_unused uint32_t data_len, uint32_t init_val){    
 358     const union ipv6_5tuple_host *k;    
 359     uint32_t t;    
 360     const uint32_t *p;
 361     #ifdef RTE_MACHINE_CPUFLAG_SSE4_2    
 362     const uint32_t  *ip_src0, *ip_src1, *ip_src2, *ip_src3;    
 363     const uint32_t  *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
 364     #endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */    
 365     k = data;    
 366     t = k->proto;    
 367     p = (const uint32_t *)&k->port_src;
 368 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2    
 369     ip_src0 = (const uint32_t *) k->ip_src;    
 370     ip_src1 = (const uint32_t *)(k->ip_src+4);    
 371     ip_src2 = (const uint32_t *)(k->ip_src+8);    
 372     ip_src3 = (const uint32_t *)(k->ip_src+12);    
 373     ip_dst0 = (const uint32_t *) k->ip_dst;    
 374     ip_dst1 = (const uint32_t *)(k->ip_dst+4);    
 375     ip_dst2 = (const uint32_t *)(k->ip_dst+8);    
 376     ip_dst3 = (const uint32_t *)(k->ip_dst+12);    
 377     init_val = rte_hash_crc_4byte(t, init_val);    
 378     init_val = rte_hash_crc_4byte(*ip_src0, init_val);    
 379     init_val = rte_hash_crc_4byte(*ip_src1, init_val);    
 380     init_val = rte_hash_crc_4byte(*ip_src2, init_val);    
 381     init_val = rte_hash_crc_4byte(*ip_src3, init_val);    
 382     init_val = rte_hash_crc_4byte(*ip_dst0, init_val);    
 383     init_val = rte_hash_crc_4byte(*ip_dst1, init_val);    
 384     init_val = rte_hash_crc_4byte(*ip_dst2, init_val);    
 385     init_val = rte_hash_crc_4byte(*ip_dst3, init_val);    
 386     init_val = rte_hash_crc_4byte(*p, init_val);
 387     #else /* RTE_MACHINE_CPUFLAG_SSE4_2 */    
 388     init_val = rte_jhash_1word(t, init_val);    
 389     init_val = rte_jhash(k->ip_src, sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);    
 390     init_val = rte_jhash(k->ip_dst, sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);    
 391     init_val = rte_jhash_1word(*p, init_val);
 392     #endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */    
 393     return (init_val);
 394 }
 395 #define IPV4_L3FWD_NUM_ROUTES \    
 396     (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
 397     #define IPV6_L3FWD_NUM_ROUTES \    
 398         (sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
 399     static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
 400     static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
 401     #endif
 402 
 403 
 404 
 405 
 406 
 407 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) 
 408 struct ipv4_l3fwd_route {
 409     uint32_t ip;  //看起来l3fwd支持RSS哟
 410     uint8_t  depth; //深度
 411     uint8_t  if_out;   //数据转发的出口
 412 };
 413 
 414 struct ipv6_l3fwd_route {
 415     uint8_t ip[16];
 416     uint8_t  depth;
 417     uint8_t  if_out;
 418 };
 419 
 420 
 421 //这里设置默认的静态的三层转发路由规则,实际使用的时候需要修改这个地方     
 422 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {  //只有8个元素???
 423     {IPv4(1,1,1,0), 24, 0},                                   //{IPv4(192,168,10,0), 24, 0},
 424     {IPv4(2,1,1,0), 24, 1},  
 425     {IPv4(3,1,1,0), 24, 2},
 426     {IPv4(4,1,1,0), 24, 3},
 427     {IPv4(5,1,1,0), 24, 4},
 428     {IPv4(6,1,1,0), 24, 5},
 429     {IPv4(7,1,1,0), 24, 6},
 430     {IPv4(8,1,1,0), 24, 7},
 431 };
 432 
 433 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
 434     {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
 435     {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
 436     {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
 437     {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
 438     {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
 439     {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
 440     {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
 441     {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
 442 };
 443 
 444 
 445 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
 446     {{IPv4(101,0,0,0), IPv4(100,10,0,1),  101, 11, IPPROTO_TCP}, 0},
 447     {{IPv4(201,0,0,0), IPv4(200,20,0,1),  102, 12, IPPROTO_TCP}, 1},
 448     {{IPv4(111,0,0,0), IPv4(100,30,0,1),  101, 11, IPPROTO_TCP}, 2},
 449     {{IPv4(211,0,0,0), IPv4(200,40,0,1),  102, 12, IPPROTO_TCP}, 3},
 450 };
 451 
 452 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
 453     {{
 454     {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
 455     {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
 456     101, 11, IPPROTO_TCP}, 0},
 457 
 458     {{
 459     {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
 460     {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
 461     102, 12, IPPROTO_TCP}, 1},
 462 
 463     {{
 464     {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
 465     {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
 466     101, 11, IPPROTO_TCP}, 2},
 467 
 468     {{
 469     {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
 470     {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
 471     102, 12, IPPROTO_TCP}, 3},
 472 };
 473 
 474 
 475 
 476 #define IPV4_L3FWD_NUM_ROUTES \
 477     (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
 478 #define IPV6_L3FWD_NUM_ROUTES \
 479     (sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
 480 
 481 #define IPV4_L3FWD_LPM_MAX_RULES         1024
 482 #define IPV6_L3FWD_LPM_MAX_RULES         1024
 483 #define IPV6_L3FWD_LPM_NUMBER_TBL8S (1 << 16)
 484 
 485 typedef struct rte_lpm lookup_struct_t;
 486 typedef struct rte_lpm6 lookup6_struct_t;
 487 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];//8个元素
 488 static lookup6_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
 489 #endif
 490 
 491 struct lcore_conf {//保存lcore的配置信息
 492     uint16_t n_rx_queue;    //接收队列的总数量
 493     struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];//物理端口和网卡队列编号组成的数组
 494     uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; //发送队列的编号组成的数组
 495     struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];//mbuf表
 496     lookup_struct_t * ipv4_lookup_struct; //实际上就是struct rte_lpm *
 497 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
 498     lookup6_struct_t * ipv6_lookup_struct;
 499 #else
 500     lookup_struct_t * ipv6_lookup_struct;
 501 #endif
 502 } __rte_cache_aligned;
 503 
 504 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
 505 
 506 /* Send burst of packets on an output interface */
 507 static inline int //在输出接口port上把数据包burst发送出去
 508 send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port)
 509 {
 510     struct rte_mbuf **m_table;
 511     int ret;
 512     uint16_t queueid;
 513 
 514     queueid = qconf->tx_queue_id[port];
 515     m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
 516 
 517     ret = rte_eth_tx_burst(port, queueid, m_table, n);
 518     if (unlikely(ret < n)) {
 519         do {
 520             rte_pktmbuf_free(m_table[ret]);
 521         } while (++ret < n);
 522     }
 523 
 524     return 0;
 525 }
 526 
 527 /* Enqueue a single packet, and send burst if queue is filled */
 528 static inline int   //发送一个mbuf
 529 send_single_packet(struct rte_mbuf *m, uint8_t port)
 530 {
 531     uint32_t lcore_id;
 532     uint16_t len;
 533     struct lcore_conf *qconf;
 534 
 535     lcore_id = rte_lcore_id();
 536 
 537     qconf = &lcore_conf[lcore_id];
 538     len = qconf->tx_mbufs[port].len;
 539     qconf->tx_mbufs[port].m_table[len] = m;
 540     len++;
 541 
 542     /* enough pkts to be sent */
 543     if (unlikely(len == MAX_PKT_BURST)) {  //如果累计到32个数据包
 544         send_burst(qconf, MAX_PKT_BURST, port); //把32个数据包发送出去
 545         len = 0;
 546     }
 547 
 548     qconf->tx_mbufs[port].len = len;
 549     return 0;
 550 }
 551 
 552 static inline __attribute__ void
 553 send_packetsx4(struct lcore_conf *qconf, uint8_t port,
 554     struct rte_mbuf *m[], uint32_t num)
 555 {
 556     uint32_t len, j, n;
 557 
 558     len = qconf->tx_mbufs[port].len;
 559 
 560     /* 如果某个队列的发送缓冲区为空,而且已有足够数量数据包待发送,那么立即发送
 561      * If TX buffer for that queue is empty, and we have enough packets,
 562      * then send them straightway.
 563      */
 564     if (num >= MAX_TX_BURST && len == 0) {
 565         n = rte_eth_tx_burst(port, qconf->tx_queue_id[port], m, num);//burst发送num个mbufs
 566         if (unlikely(n < num)) {  //如果实际发送数据包的个数小于num
 567             do {
 568                 rte_pktmbuf_free(m[n]); //把剩下的num-n个mbufs返回mempool
 569             } while (++n < num);  
 570         }
 571         return;
 572     }
 573 
 574     /*
 575      * Put packets into TX buffer for that queue.
 576      */
 577       //把那些数据包放到网卡队列的发送缓冲区中
 578     n = len + num;
 579     n = (n > MAX_PKT_BURST) ? MAX_PKT_BURST - len : num;
 580 
 581     j = 0;
 582     switch (n % FWDSTEP) {  
 583         while (j < n) {
 584             case 0:
 585                 qconf->tx_mbufs[port].m_table[len + j] = m[j];
 586                 j++;
 587             case 3:
 588                 qconf->tx_mbufs[port].m_table[len + j] = m[j];
 589                 j++;
 590             case 2:
 591                 qconf->tx_mbufs[port].m_table[len + j] = m[j];
 592                 j++;
 593             case 1:
 594                 qconf->tx_mbufs[port].m_table[len + j] = m[j];
 595                 j++;
 596         }
 597     }
 598 
 599     len += n;
 600 
 601     /*待发送的包数量达到32个   enough pkts to be sent */
 602     if (unlikely(len == MAX_PKT_BURST)) {
 603 
 604         send_burst(qconf, MAX_PKT_BURST, port);
 605 
 606         /* copy rest of the packets into the TX buffer. */
 607         len = num - n;
 608         j = 0;
 609         switch (len % FWDSTEP) {
 610             while (j < len) {
 611             case 0:
 612                 qconf->tx_mbufs[port].m_table[j] = m[n + j];
 613                 j++;
 614             case 3:
 615                 qconf->tx_mbufs[port].m_table[j] = m[n + j];
 616                 j++;
 617             case 2:
 618                 qconf->tx_mbufs[port].m_table[j] = m[n + j];
 619                 j++;
 620             case 1:
 621                 qconf->tx_mbufs[port].m_table[j] = m[n + j];
 622                 j++;
 623             }
 624         }
 625     }
 626 
 627     qconf->tx_mbufs[port].len = len;
 628 }
 629 
 630 #ifdef DO_RFC_1812_CHECKS
 631 static inline int
 632 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len)
 633 {
 634     /* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
 635     /*
 636      * 1. The packet length reported by the Link Layer must be large
 637      * enough to hold the minimum length legal IP datagram (20 bytes).
 638      */
 639     if (link_len < sizeof(struct ipv4_hdr))
 640         return -1;
 641 
 642     /* 2. The IP checksum must be correct. */
 643     /* this is checked in H/W */
 644 
 645     /*
 646      * 3. The IP version number must be 4. If the version number is not 4
 647      * then the packet may be another version of IP, such as IPng or
 648      * ST-II.
 649      */
 650     if (((pkt->version_ihl) >> 4) != 4)
 651         return -3;
 652     /*
 653      * 4. The IP header length field must be large enough to hold the
 654      * minimum length legal IP datagram (20 bytes = 5 words).
 655      */
 656     if ((pkt->version_ihl & 0xf) < 5)
 657         return -4;
 658 
 659     /*
 660      * 5. The IP total length field must be large enough to hold the IP
 661      * datagram header, whose length is specified in the IP header length
 662      * field.
 663      */
 664     if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr))
 665         return -5;
 666 
 667     return 0;
 668 }
 669 #endif
 670 
 671 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
 672 
 673 static __m128i mask0;
 674 static __m128i mask1;
 675 static __m128i mask2;
 676 static inline uint8_t  //哈希情形下获取转发出口
 677 get_ipv4_dst_port(void *ipv4_hdr, uint8_t portid, lookup_struct_t * ipv4_l3fwd_lookup_struct)
 678 {
 679     int ret = 0;
 680     union ipv4_5tuple_host key;
 681 
 682     ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);
 683     __m128i data = _mm_loadu_si128((__m128i*)(ipv4_hdr));
 684     /* Get 5 tuple: dst port, src port, dst IP address, src IP address and protocol */
 685     key.xmm = _mm_and_si128(data, mask0);
 686     /* Find destination port */
 687     ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
 688     return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
 689 }
 690 
 691 static inline uint8_t
 692 get_ipv6_dst_port(void *ipv6_hdr,  uint8_t portid, lookup_struct_t * ipv6_l3fwd_lookup_struct)
 693 {
 694     int ret = 0;
 695     union ipv6_5tuple_host key;
 696 
 697     ipv6_hdr = (uint8_t *)ipv6_hdr + offsetof(struct ipv6_hdr, payload_len);
 698     __m128i data0 = _mm_loadu_si128((__m128i*)(ipv6_hdr));
 699     __m128i data1 = _mm_loadu_si128((__m128i*)(((uint8_t*)ipv6_hdr)+sizeof(__m128i)));
 700     __m128i data2 = _mm_loadu_si128((__m128i*)(((uint8_t*)ipv6_hdr)+sizeof(__m128i)+sizeof(__m128i)));
 701     /* Get part of 5 tuple: src IP address lower 96 bits and protocol */
 702     key.xmm[0] = _mm_and_si128(data0, mask1);
 703     /* Get part of 5 tuple: dst IP address lower 96 bits and src IP address higher 32 bits */
 704     key.xmm[1] = data1;
 705     /* Get part of 5 tuple: dst port and src port and dst IP address higher 32 bits */
 706     key.xmm[2] = _mm_and_si128(data2, mask2);
 707 
 708     /* Find destination port */
 709     ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
 710     return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]);
 711 }
 712 #endif
 713 
 714 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
 715 
 716 static inline uint8_t  //LPM情形下获取ipv4数据包的目的端口
 717 get_ipv4_dst_port(void *ipv4_hdr,  uint8_t portid, lookup_struct_t * ipv4_l3fwd_lookup_struct)
 718 {
 719     uint8_t next_hop;
 720 
 721     return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
 722         rte_be_to_cpu_32(((struct ipv4_hdr *)ipv4_hdr)->dst_addr),
 723         &next_hop) == 0) ? next_hop : portid);
 724 }
 725 
 726 static inline uint8_t
 727 get_ipv6_dst_port(void *ipv6_hdr,  uint8_t portid, lookup6_struct_t * ipv6_l3fwd_lookup_struct)
 728 {
 729     uint8_t next_hop;
 730     return (uint8_t) ((rte_lpm6_lookup(ipv6_l3fwd_lookup_struct,
 731             ((struct ipv6_hdr*)ipv6_hdr)->dst_addr, &next_hop) == 0)?
 732             next_hop : portid);
 733 }
 734 #endif
 735 
 736 static inline void l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid,
 737     struct lcore_conf *qconf)  __attribute__((unused));
 738 
 739 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) && \
 740     (ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
 741 
 742 static inline void get_ipv6_5tuple(struct rte_mbuf* m0, __m128i mask0, __m128i mask1,
 743                  union ipv6_5tuple_host * key)
 744 {
 745         __m128i tmpdata0 = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m0, unsigned char *)
 746             + sizeof(struct ether_hdr) + offsetof(struct ipv6_hdr, payload_len)));
 747         __m128i tmpdata1 = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m0, unsigned char *)
 748             + sizeof(struct ether_hdr) + offsetof(struct ipv6_hdr, payload_len)
 749             +  sizeof(__m128i)));
 750         __m128i tmpdata2 = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m0, unsigned char *)
 751             + sizeof(struct ether_hdr) + offsetof(struct ipv6_hdr, payload_len)
 752             + sizeof(__m128i) + sizeof(__m128i)));
 753         key->xmm[0] = _mm_and_si128(tmpdata0, mask0);
 754         key->xmm[1] = tmpdata1;
 755         key->xmm[2] = _mm_and_si128(tmpdata2, mask1);
 756     return;
 757 }
 758 
 759 
 760 static inline void 
 761 simple_ipv4_fwd_4pkts(struct rte_mbuf* m[4], uint8_t portid, struct lcore_conf *qconf)
 762 {
 763     struct ether_hdr *eth_hdr[4];
 764     struct ipv4_hdr *ipv4_hdr[4];
 765     void *d_addr_bytes[4];
 766     uint8_t dst_port[4];
 767     int32_t ret[4];
 768     union ipv4_5tuple_host key[4];
 769     __m128i data[4];
 770 
 771     eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *);
 772     eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *);
 773     eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *);
 774     eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *);
 775 
 776     /* Handle IPv4 headers.*/
 777     ipv4_hdr[0] = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m[0], unsigned char *) +
 778             sizeof(struct ether_hdr));
 779     ipv4_hdr[1] = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m[1], unsigned char *) +
 780             sizeof(struct ether_hdr));
 781     ipv4_hdr[2] = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m[2], unsigned char *) +
 782             sizeof(struct ether_hdr));
 783     ipv4_hdr[3] = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m[3], unsigned char *) +
 784             sizeof(struct ether_hdr));
 785 
 786 #ifdef DO_RFC_1812_CHECKS
 787     /* Check to make sure the packet is valid (RFC1812) */
 788     uint8_t valid_mask = MASK_ALL_PKTS;
 789     if (is_valid_ipv4_pkt(ipv4_hdr[0], m[0]->pkt_len) < 0) {
 790         rte_pktmbuf_free(m[0]);
 791         valid_mask &= EXECLUDE_1ST_PKT;
 792     }
 793     if (is_valid_ipv4_pkt(ipv4_hdr[1], m[1]->pkt_len) < 0) {
 794         rte_pktmbuf_free(m[1]);
 795         valid_mask &= EXECLUDE_2ND_PKT;
 796     }
 797     if (is_valid_ipv4_pkt(ipv4_hdr[2], m[2]->pkt_len) < 0) {
 798         rte_pktmbuf_free(m[2]);
 799         valid_mask &= EXECLUDE_3RD_PKT;
 800     }
 801     if (is_valid_ipv4_pkt(ipv4_hdr[3], m[3]->pkt_len) < 0) {
 802         rte_pktmbuf_free(m[3]);
 803         valid_mask &= EXECLUDE_4TH_PKT;
 804     }
 805     if (unlikely(valid_mask != MASK_ALL_PKTS)) {
 806         if (valid_mask == 0){
 807             return;
 808         } else {
 809             uint8_t i = 0;
 810             for (i = 0; i < 4; i++) {
 811                 if ((0x1 << i) & valid_mask) {
 812                     l3fwd_simple_forward(m[i], portid, qconf);
 813                 }
 814             }
 815             return;
 816         }
 817     }
 818 #endif // End of #ifdef DO_RFC_1812_CHECKS
 819 
 820     data[0] = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m[0], unsigned char *) +
 821         sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
 822     data[1] = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m[1], unsigned char *) +
 823         sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
 824     data[2] = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m[2], unsigned char *) +
 825         sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
 826     data[3] = _mm_loadu_si128((__m128i*)(rte_pktmbuf_mtod(m[3], unsigned char *) +
 827         sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
 828 
 829     key[0].xmm = _mm_and_si128(data[0], mask0);
 830     key[1].xmm = _mm_and_si128(data[1], mask0);
 831     key[2].xmm = _mm_and_si128(data[2], mask0);
 832     key[3].xmm = _mm_and_si128(data[3], mask0);
 833 
 834     const void *key_array[4] = {&key[0], &key[1], &key[2],&key[3]};
 835     rte_hash_lookup_multi(qconf->ipv4_lookup_struct, &key_array[0], 4, ret);
 836     dst_port[0] = (uint8_t) ((ret[0] < 0) ? portid : ipv4_l3fwd_out_if[ret[0]]);
 837     dst_port[1] = (uint8_t) ((ret[1] < 0) ? portid : ipv4_l3fwd_out_if[ret[1]]);
 838     dst_port[2] = (uint8_t) ((ret[2] < 0) ? portid : ipv4_l3fwd_out_if[ret[2]]);
 839     dst_port[3] = (uint8_t) ((ret[3] < 0) ? portid : ipv4_l3fwd_out_if[ret[3]]);
 840 
 841     if (dst_port[0] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[0]) == 0)
 842         dst_port[0] = portid;
 843     if (dst_port[1] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[1]) == 0)
 844         dst_port[1] = portid;
 845     if (dst_port[2] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[2]) == 0)
 846         dst_port[2] = portid;
 847     if (dst_port[3] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[3]) == 0)
 848         dst_port[3] = portid;
 849 
 850     /* 02:00:00:00:00:xx */
 851     d_addr_bytes[0] = &eth_hdr[0]->d_addr.addr_bytes[0];
 852     d_addr_bytes[1] = &eth_hdr[1]->d_addr.addr_bytes[0];
 853     d_addr_bytes[2] = &eth_hdr[2]->d_addr.addr_bytes[0];
 854     d_addr_bytes[3] = &eth_hdr[3]->d_addr.addr_bytes[0];
 855     *((uint64_t *)d_addr_bytes[0]) = 0x000000000002 + ((uint64_t)dst_port[0] << 40);
 856     *((uint64_t *)d_addr_bytes[1]) = 0x000000000002 + ((uint64_t)dst_port[1] << 40);
 857     *((uint64_t *)d_addr_bytes[2]) = 0x000000000002 + ((uint64_t)dst_port[2] << 40);
 858     *((uint64_t *)d_addr_bytes[3]) = 0x000000000002 + ((uint64_t)dst_port[3] << 40);
 859 
 860 #ifdef DO_RFC_1812_CHECKS
 861     /* Update time to live and header checksum */
 862     --(ipv4_hdr[0]->time_to_live);
 863     --(ipv4_hdr[1]->time_to_live);
 864     --(ipv4_hdr[2]->time_to_live);
 865     --(ipv4_hdr[3]->time_to_live);
 866     ++(ipv4_hdr[0]->hdr_checksum);
 867     ++(ipv4_hdr[1]->hdr_checksum);
 868     ++(ipv4_hdr[2]->hdr_checksum);
 869     ++(ipv4_hdr[3]->hdr_checksum);
 870 #endif
 871 
 872     /* src addr */
 873     ether_addr_copy(&ports_eth_addr[dst_port[0]], &eth_hdr[0]->s_addr);
 874     ether_addr_copy(&ports_eth_addr[dst_port[1]], &eth_hdr[1]->s_addr);
 875     ether_addr_copy(&ports_eth_addr[dst_port[2]], &eth_hdr[2]->s_addr);
 876     ether_addr_copy(&ports_eth_addr[dst_port[3]], &eth_hdr[3]->s_addr);
 877 
 878     send_single_packet(m[0], (uint8_t)dst_port[0]);
 879     send_single_packet(m[1], (uint8_t)dst_port[1]);
 880     send_single_packet(m[2], (uint8_t)dst_port[2]);
 881     send_single_packet(m[3], (uint8_t)dst_port[3]);
 882 
 883 }
 884 
 885 
 886 
 887 #define MASK_ALL_PKTS    0xf
 888 #define EXECLUDE_1ST_PKT 0xe
 889 #define EXECLUDE_2ND_PKT 0xd
 890 #define EXECLUDE_3RD_PKT 0xb
 891 #define EXECLUDE_4TH_PKT 0x7
 892 
 893 
 894 
 895 
 896 static inline void
 897 simple_ipv6_fwd_4pkts(struct rte_mbuf* m[4], uint8_t portid, struct lcore_conf *qconf)
 898 {
 899     struct ether_hdr *eth_hdr[4];
 900     __attribute__((unused)) struct ipv6_hdr *ipv6_hdr[4];
 901     void *d_addr_bytes[4];
 902     uint8_t dst_port[4];
 903     int32_t ret[4];
 904     union ipv6_5tuple_host key[4];
 905 
 906     eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *);
 907     eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *);
 908     eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *);
 909     eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *);
 910 
 911     /* Handle IPv6 headers.*/
 912     ipv6_hdr[0] = (struct ipv6_hdr *)(rte_pktmbuf_mtod(m[0], unsigned char *) +
 913             sizeof(struct ether_hdr));
 914     ipv6_hdr[1] = (struct ipv6_hdr *)(rte_pktmbuf_mtod(m[1], unsigned char *) +
 915             sizeof(struct ether_hdr));
 916     ipv6_hdr[2] = (struct ipv6_hdr *)(rte_pktmbuf_mtod(m[2], unsigned char *) +
 917             sizeof(struct ether_hdr));
 918     ipv6_hdr[3] = (struct ipv6_hdr *)(rte_pktmbuf_mtod(m[3], unsigned char *) +
 919             sizeof(struct ether_hdr));
 920 
 921     get_ipv6_5tuple(m[0], mask1, mask2, &key[0]);
 922     get_ipv6_5tuple(m[1], mask1, mask2, &key[1]);
 923     get_ipv6_5tuple(m[2], mask1, mask2, &key[2]);
 924     get_ipv6_5tuple(m[3], mask1, mask2, &key[3]);
 925 
 926     const void *key_array[4] = {&key[0], &key[1], &key[2],&key[3]};
 927     rte_hash_lookup_multi(qconf->ipv6_lookup_struct, &key_array[0], 4, ret);
 928     dst_port[0] = (uint8_t) ((ret[0] < 0)? portid:ipv6_l3fwd_out_if[ret[0]]);
 929     dst_port[1] = (uint8_t) ((ret[1] < 0)? portid:ipv6_l3fwd_out_if[ret[1]]);
 930     dst_port[2] = (uint8_t) ((ret[2] < 0)? portid:ipv6_l3fwd_out_if[ret[2]]);
 931     dst_port[3] = (uint8_t) ((ret[3] < 0)? portid:ipv6_l3fwd_out_if[ret[3]]);
 932 
 933     if (dst_port[0] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[0]) == 0)
 934         dst_port[0] = portid;
 935     if (dst_port[1] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[1]) == 0)
 936         dst_port[1] = portid;
 937     if (dst_port[2] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[2]) == 0)
 938         dst_port[2] = portid;
 939     if (dst_port[3] >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port[3]) == 0)
 940         dst_port[3] = portid;
 941 
 942     /* 02:00:00:00:00:xx */
 943     d_addr_bytes[0] = &eth_hdr[0]->d_addr.addr_bytes[0];
 944     d_addr_bytes[1] = &eth_hdr[1]->d_addr.addr_bytes[0];
 945     d_addr_bytes[2] = &eth_hdr[2]->d_addr.addr_bytes[0];
 946     d_addr_bytes[3] = &eth_hdr[3]->d_addr.addr_bytes[0];
 947     *((uint64_t *)d_addr_bytes[0]) = 0x000000000002 + ((uint64_t)dst_port[0] << 40);
 948     *((uint64_t *)d_addr_bytes[1]) = 0x000000000002 + ((uint64_t)dst_port[1] << 40);
 949     *((uint64_t *)d_addr_bytes[2]) = 0x000000000002 + ((uint64_t)dst_port[2] << 40);
 950     *((uint64_t *)d_addr_bytes[3]) = 0x000000000002 + ((uint64_t)dst_port[3] << 40);
 951 
 952     /* src addr */
 953     ether_addr_copy(&ports_eth_addr[dst_port[0]], &eth_hdr[0]->s_addr);
 954     ether_addr_copy(&ports_eth_addr[dst_port[1]], &eth_hdr[1]->s_addr);
 955     ether_addr_copy(&ports_eth_addr[dst_port[2]], &eth_hdr[2]->s_addr);
 956     ether_addr_copy(&ports_eth_addr[dst_port[3]], &eth_hdr[3]->s_addr);
 957 
 958     send_single_packet(m[0], (uint8_t)dst_port[0]);
 959     send_single_packet(m[1], (uint8_t)dst_port[1]);
 960     send_single_packet(m[2], (uint8_t)dst_port[2]);
 961     send_single_packet(m[3], (uint8_t)dst_port[3]);
 962 
 963 }
 964 #endif /* APP_LOOKUP_METHOD */
 965 
 966 static inline __attribute__ void  //简单三层转发,没有使用SSE4.1优化
 967 l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, struct lcore_conf *qconf)
 968 {
 969     struct ether_hdr *eth_hdr;
 970     struct ipv4_hdr *ipv4_hdr;
 971     void *d_addr_bytes;
 972     uint8_t dst_port;
 973 
 974     eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); //得到eth_hdr指针
 975 
 976     if (m->ol_flags & PKT_RX_IPV4_HDR) { //如果是ipv4包
 977         /* Handle IPv4 headers.*/
 978         ipv4_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, unsigned char *) +
 979                 sizeof(struct ether_hdr));
 980 
 981 #ifdef DO_RFC_1812_CHECKS
 982         /* Check to make sure the packet is valid (RFC1812) */
 983         if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
 984             rte_pktmbuf_free(m);
 985             return;
 986         }
 987 #endif
 988        //想要满足文生提出的需求,主要在这里修改ip层和tcp层的数据内容。
 989          dst_port = get_ipv4_dst_port(ipv4_hdr, portid, //获取转发出口
 990             qconf->ipv4_lookup_struct);
 991         if (dst_port >= RTE_MAX_ETHPORTS ||
 992                 (enabled_port_mask & 1 << dst_port) == 0)
 993             dst_port = portid;  //出错则直接把入口作为转发出口
 994 
 995         /* 02:00:00:00:00:xx  这里是修改目的mac地址吗???  */
 996         d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
 997         *((uint64_t *)d_addr_bytes) = ETHER_LOCAL_ADMIN_ADDR +
 998             ((uint64_t)dst_port << 40);
 999 
1000 #ifdef DO_RFC_1812_CHECKS
1001         /* Update time to live and header checksum */
1002         --(ipv4_hdr->time_to_live);
1003         ++(ipv4_hdr->hdr_checksum);
1004 #endif
1005 
1006         /* //把进入包的目的mac地址作为转发包的源地址     src addr   */
1007         ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
1008 
1009         send_single_packet(m, dst_port); //经过dst_port把转发包发送出去
1010 
1011     } else { //如果是ipv6包
1012         /* Handle IPv6 headers.*/
1013         struct ipv6_hdr *ipv6_hdr;
1014 
1015         ipv6_hdr = (struct ipv6_hdr *)(rte_pktmbuf_mtod(m, unsigned char *) +
1016                 sizeof(struct ether_hdr));
1017 
1018         dst_port = get_ipv6_dst_port(ipv6_hdr, portid, qconf->ipv6_lookup_struct);
1019 
1020         if (dst_port >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port) == 0)
1021             dst_port = portid;
1022 
1023         /* 02:00:00:00:00:xx */
1024         d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
1025         *((uint64_t *)d_addr_bytes) = ETHER_LOCAL_ADMIN_ADDR +
1026             ((uint64_t)dst_port << 40);
1027 
1028         /* src addr */
1029         ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
1030 
1031         send_single_packet(m, dst_port);
1032     }
1033 
1034 }
1035 
1036 #ifdef DO_RFC_1812_CHECKS
1037 
1038 #define    IPV4_MIN_VER_IHL    0x45
1039 #define    IPV4_MAX_VER_IHL    0x4f
1040 #define    IPV4_MAX_VER_IHL_DIFF    (IPV4_MAX_VER_IHL - IPV4_MIN_VER_IHL)
1041 
1042 /* Minimum value of IPV4 total length (20B) in network byte order. */
1043 #define    IPV4_MIN_LEN_BE    (sizeof(struct ipv4_hdr) << 8)
1044 
1045 /*
1046  * From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2:
1047  * - The IP version number must be 4.
1048  * - The IP header length field must be large enough to hold the
1049  *    minimum length legal IP datagram (20 bytes = 5 words).
1050  * - The IP total length field must be large enough to hold the IP
1051  *   datagram header, whose length is specified in the IP header length
1052  *   field.
1053  * If we encounter invalid IPV4 packet, then set destination port for it
1054  * to BAD_PORT value.
1055  */
1056 static inline __attribute__ void //ipv4错误检查
1057 rfc1812_process(struct ipv4_hdr *ipv4_hdr, uint16_t *dp, uint32_t flags)
1058 {
1059     uint8_t ihl;
1060 
1061     if ((flags & PKT_RX_IPV4_HDR) != 0) {//如果是ipv4
1062 
1063         ihl = ipv4_hdr->version_ihl - IPV4_MIN_VER_IHL;
1064 
1065         ipv4_hdr->time_to_live--;
1066         ipv4_hdr->hdr_checksum++;
1067 
1068         if (ihl > IPV4_MAX_VER_IHL_DIFF ||
1069                 ((uint8_t)ipv4_hdr->total_length == 0 &&
1070                 ipv4_hdr->total_length < IPV4_MIN_LEN_BE)) {
1071             dp[0] = BAD_PORT;  //应该是出错了
1072         }
1073     }
1074 }
1075 
1076 #else
1077 #define    rfc1812_process(mb, dp)    do { } while (0)
1078 #endif /* DO_RFC_1812_CHECKS */
1079 
1080 
1081 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
1082     (ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
1083 
1084 static inline __attribute__ uint16_t  //得到目的ip地址对应的转发出口
1085 get_dst_port(const struct lcore_conf *qconf, struct rte_mbuf *pkt,
1086     uint32_t dst_ipv4, uint8_t portid)
1087 {
1088     uint8_t next_hop;
1089     struct ipv6_hdr *ipv6_hdr;
1090     struct ether_hdr *eth_hdr;
1091 
1092     if (pkt->ol_flags & PKT_RX_IPV4_HDR) {  //如果都是ipv4
1093         if (rte_lpm_lookup(qconf->ipv4_lookup_struct, dst_ipv4,
1094                 &next_hop) != 0)  //返回0则查找到,next_hop中已经得到下一跳
1095             next_hop = portid;  //此时没找到,则直接把portid设定为下一跳
1096     } else if (pkt->ol_flags & PKT_RX_IPV6_HDR) { //如果都是ipv6
1097         eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
1098         ipv6_hdr = (struct ipv6_hdr *)(eth_hdr + 1);
1099         if (rte_lpm6_lookup(qconf->ipv6_lookup_struct,
1100                 ipv6_hdr->dst_addr, &next_hop) != 0) 
1101             next_hop = portid;
1102     } else { //如果有其他种类的数据包
1103         next_hop = portid;//设定下一跳
1104     }
1105 
1106     return next_hop;//返回下一跳
1107 }
1108 
1109 static inline void  //处理一个数据包
1110 process_packet(struct lcore_conf *qconf, struct rte_mbuf *pkt,
1111     uint16_t *dst_port, uint8_t portid)
1112 {
1113     struct ether_hdr *eth_hdr;
1114     struct ipv4_hdr *ipv4_hdr;
1115     uint32_t dst_ipv4;
1116     uint16_t dp;
1117     __m128i te, ve;
1118 
1119     eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);//获取eth首部
1120     ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);//获取ipv4首部
1121 
1122     dst_ipv4 = ipv4_hdr->dst_addr; //得到大端的ipv4目的地址
1123     dst_ipv4 = rte_be_to_cpu_32(dst_ipv4);//转换成小端
1124     dp = get_dst_port(qconf, pkt, dst_ipv4, portid); //获取转发出口/下一跳
1125 
1126     te = _mm_load_si128((__m128i *)eth_hdr);
1127     ve = val_eth[dp];
1128 
1129     dst_port[0] = dp;
1130     rfc1812_process(ipv4_hdr, dst_port, pkt->ol_flags);
1131 
1132     te =  _mm_blend_epi16(te, ve, MASK_ETH);
1133     _mm_store_si128((__m128i *)eth_hdr, te);
1134 }
1135 
1136 /*   从4个mbufs中读取目的IP地址和ol_flags
1137  * Read ol_flags and destination IPV4 addresses from 4 mbufs.
1138  */
1139 static inline void
1140 processx4_step1(struct rte_mbuf *pkt[FWDSTEP], __m128i *dip, uint32_t *flag)
1141 {
1142     struct ipv4_hdr *ipv4_hdr;
1143     struct ether_hdr *eth_hdr;
1144     uint32_t x0, x1, x2, x3;
1145         //第一个mbuf
1146     eth_hdr = rte_pktmbuf_mtod(pkt[0], struct ether_hdr *);//得到eth_hdr
1147     ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);//得到ipv4_hdr
1148     x0 = ipv4_hdr->dst_addr;//得到dst_addr
1149     flag[0] = pkt[0]->ol_flags & PKT_RX_IPV4_HDR;
1150         //第二个mbuf
1151     eth_hdr = rte_pktmbuf_mtod(pkt[1], struct ether_hdr *);
1152     ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
1153     x1 = ipv4_hdr->dst_addr;
1154     flag[0] &= pkt[1]->ol_flags; //与前一个mbuf标志做&运算
1155         //第三个mbuf
1156     eth_hdr = rte_pktmbuf_mtod(pkt[2], struct ether_hdr *);
1157     ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
1158     x2 = ipv4_hdr->dst_addr;
1159     flag[0] &= pkt[2]->ol_flags; //与前一个mbuf标志做&运算
1160         //第四个mbuf
1161     eth_hdr = rte_pktmbuf_mtod(pkt[3], struct ether_hdr *);
1162     ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
1163     x3 = ipv4_hdr->dst_addr;
1164     flag[0] &= pkt[3]->ol_flags; //与前一个mbuf标志做&运算
1165 
1166     dip[0] = _mm_set_epi32(x3, x2, x1, x0);//把4个dst_addr合并为128位的寄存器
1167 }
1168 
1169 /* 
1170  * Lookup into LPM for destination port.
1171  * If lookup fails, use incoming port (portid) as destination port.
1172  */  //在LPM中查找转发出口/下一跳,如果没有找到则把入口作为转发出口
1173 static inline void 
1174 processx4_step2(const struct lcore_conf *qconf, __m128i dip, uint32_t flag,
1175     uint8_t portid, struct rte_mbuf *pkt[FWDSTEP], uint16_t dprt[FWDSTEP])
1176 {
1177     rte_xmm_t dst;
1178     const  __m128i bswap_mask = _mm_set_epi8(12, 13, 14, 15, 8, 9, 10, 11,
1179                         4, 5, 6, 7, 0, 1, 2, 3);  //表示重新排列的顺序
1180 
1181     /* Byte swap 4 IPV4 addresses.   按照字节交换ipv4地址 */
1182     dip = _mm_shuffle_epi8(dip, bswap_mask);
1183 
1184     /* 如果4个分组都是ipv4的    if all 4 packets are IPV4. */
1185     if (likely(flag != 0)) {
1186         rte_lpm_lookupx4(qconf->ipv4_lookup_struct, dip, dprt, portid);
1187     } else {
1188         dst.x = dip; //获取4个目的ip地址
1189         dprt[0] = get_dst_port(qconf, pkt[0], dst.u32[0], portid);//得到下一跳/转发出口
1190         dprt[1] = get_dst_port(qconf, pkt[1], dst.u32[1], portid);
1191         dprt[2] = get_dst_port(qconf, pkt[2], dst.u32[2], portid);
1192         dprt[3] = get_dst_port(qconf, pkt[3], dst.u32[3], portid);
1193     }
1194 }
1195 
1196 /*  
1197  * Update source and destination MAC addresses in the ethernet header.
1198  * Perform RFC1812 checks and updates for IPV4 packets.
1199  */      //更新目的mac和源mac地址
1200 static inline void
1201 processx4_step3(struct rte_mbuf *pkt[FWDSTEP], uint16_t dst_port[FWDSTEP])
1202 {
1203     __m128i te[FWDSTEP];
1204     __m128i ve[FWDSTEP];
1205     __m128i *p[FWDSTEP];
1206 
1207     p[0] = (rte_pktmbuf_mtod(pkt[0], __m128i *));//指向第一个数据包的内容
1208     p[1] = (rte_pktmbuf_mtod(pkt[1], __m128i *));
1209     p[2] = (rte_pktmbuf_mtod(pkt[2], __m128i *));
1210     p[3] = (rte_pktmbuf_mtod(pkt[3], __m128i *));
1211 
1212     ve[0] = val_eth[dst_port[0]];  
1213     te[0] = _mm_load_si128(p[0]);//将p[0]指向的内容加载到128位寄存器中
1214 
1215     ve[1] = val_eth[dst_port[1]];
1216     te[1] = _mm_load_si128(p[1]);
1217 
1218     ve[2] = val_eth[dst_port[2]];
1219     te[2] = _mm_load_si128(p[2]);
1220 
1221     ve[3] = val_eth[dst_port[3]];
1222     te[3] = _mm_load_si128(p[3]);
1223 
1224     /*替换更新前12个字节,保留剩余   Update first 12 bytes, keep rest bytes intact. */
1225     te[0] =  _mm_blend_epi16(te[0], ve[0], MASK_ETH);
1226     te[1] =  _mm_blend_epi16(te[1], ve[1], MASK_ETH);
1227     te[2] =  _mm_blend_epi16(te[2], ve[2], MASK_ETH);
1228     te[3] =  _mm_blend_epi16(te[3], ve[3], MASK_ETH);
1229 
1230     _mm_store_si128(p[0], te[0]);
1231     _mm_store_si128(p[1], te[1]);
1232     _mm_store_si128(p[2], te[2]);
1233     _mm_store_si128(p[3], te[3]);
1234 
1235     rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[0] + 1),
1236         &dst_port[0], pkt[0]->ol_flags);
1237     rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[1] + 1),
1238         &dst_port[1], pkt[1]->ol_flags);
1239     rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[2] + 1),
1240         &dst_port[2], pkt[2]->ol_flags);
1241     rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[3] + 1),
1242         &dst_port[3], pkt[3]->ol_flags); 
1243 }
1244 
1245 /*   //把转发出口相同的连续数据包做一次burst发送
1246  为了避免额外的延迟,与其他的包处理一起完成,但在对转发出口做了决策之后。
1247  
1248  * We group consecutive packets with the same destionation port into one burst.
1249  * To avoid extra latency this is done together with some other packet
1250  * processing, but after we made a final decision about packet's destination.
1251  * To do this we maintain:
1252  * pnum - array of number of consecutive packets with the same dest port for
1253  * each packet in the input burst.    ***pnum是保存转发出口相同的连续数据包的数组
1254  * lp - pointer to the last updated element in the pnum.    ***lp指向pnum中最后一次更新的元素
1255  * dlp - dest port value lp corresponds to.  ***dlp为lp对应的转发出口编号
1256  */
1257 
1258 #define    GRPSZ    (1 << FWDSTEP)  //16
1259 #define    GRPMSK    (GRPSZ - 1)  //15
1260           
1261 #define GROUP_PORT_STEP(dlp, dcp, lp, pn, idx)    do { \
1262     if (likely((dlp) == (dcp)[(idx)])) {         \
1263         (lp)[0]++;                           \
1264     } else {                                     \
1265         (dlp) = (dcp)[idx];                  \
1266         (lp) = (pn) + (idx);                 \
1267         (lp)[0] = 1;                         \
1268     }                                            \
1269 } while (0)
1270 
1271 /*
1272  * Group consecutive packets with the same destination port in bursts of 4.
1273  * Suppose we have array of destionation ports:
1274  * dst_port[] = {a, b, c, d,, e, ... }
1275  * dp1 should contain: <a, b, c, d>, dp2: <b, c, d, e>.
1276  * We doing 4 comparisions at once and the result is 4 bit mask.
1277  * This mask is used as an index into prebuild array of pnum values.
1278  */
1279 static inline uint16_t *  //把出口相同的4个数据包构成一组
1280 port_groupx4(uint16_t pn[FWDSTEP + 1], uint16_t *lp, __m128i dp1, __m128i dp2)
1281 {
1282     static const struct {
1283         uint64_t pnum; /*为pnum预设的4个值              prebuild 4 values for pnum[]. */
1284         int32_t  idx;  /*最后一次更新的元素的索引         index for new last updated elemnet. */
1285         uint16_t lpv;  /*把值加到最后一次更新的元素 add value to the last updated element. */
1286     } gptbl[GRPSZ] = {
1287     {
1288         /* 0: a != b, b != c, c != d, d != e */
1289         .pnum = UINT64_C(0x0001000100010001),
1290         .idx = 4,
1291         .lpv = 0,
1292     },
1293     {
1294         /* 1: a == b, b != c, c != d, d != e */
1295         .pnum = UINT64_C(0x0001000100010002),
1296         .idx = 4,
1297         .lpv = 1,
1298     },
1299     {
1300         /* 2: a != b, b == c, c != d, d != e */
1301         .pnum = UINT64_C(0x0001000100020001),
1302         .idx = 4,
1303         .lpv = 0,
1304     },
1305     {
1306         /* 3: a == b, b == c, c != d, d != e */
1307         .pnum = UINT64_C(0x0001000100020003),
1308         .idx = 4,
1309         .lpv = 2,
1310     },
1311     {
1312         /* 4: a != b, b != c, c == d, d != e */
1313         .pnum = UINT64_C(0x0001000200010001),
1314         .idx = 4,
1315         .lpv = 0,
1316     },
1317     {
1318         /* 5: a == b, b != c, c == d, d != e */
1319         .pnum = UINT64_C(0x0001000200010002),
1320         .idx = 4,
1321         .lpv = 1,
1322     },
1323     {
1324         /* 6: a != b, b == c, c == d, d != e */
1325         .pnum = UINT64_C(0x0001000200030001),
1326         .idx = 4,
1327         .lpv = 0,
1328     },
1329     {
1330         /* 7: a == b, b == c, c == d, d != e */
1331         .pnum = UINT64_C(0x0001000200030004),
1332         .idx = 4,
1333         .lpv = 3,
1334     },
1335     {
1336         /* 8: a != b, b != c, c != d, d == e */
1337         .pnum = UINT64_C(0x0002000100010001),
1338         .idx = 3,
1339         .lpv = 0,
1340     },
1341     {
1342         /* 9: a == b, b != c, c != d, d == e */
1343         .pnum = UINT64_C(0x0002000100010002),
1344         .idx = 3,
1345         .lpv = 1,
1346     },
1347     {
1348         /* 0xa: a != b, b == c, c != d, d == e */
1349         .pnum = UINT64_C(0x0002000100020001),
1350         .idx = 3,
1351         .lpv = 0,
1352     },
1353     {
1354         /* 0xb: a == b, b == c, c != d, d == e */
1355         .pnum = UINT64_C(0x0002000100020003),
1356         .idx = 3,
1357         .lpv = 2,
1358     },
1359     {
1360         /* 0xc: a != b, b != c, c == d, d == e */
1361         .pnum = UINT64_C(0x0002000300010001),
1362         .idx = 2,
1363         .lpv = 0,
1364     },
1365     {
1366         /* 0xd: a == b, b != c, c == d, d == e */
1367         .pnum = UINT64_C(0x0002000300010002),
1368         .idx = 2,
1369         .lpv = 1,
1370     },
1371     {
1372         /* 0xe: a != b, b == c, c == d, d == e */
1373         .pnum = UINT64_C(0x0002000300040001),
1374         .idx = 1,
1375         .lpv = 0,
1376     },
1377     {
1378         /* 0xf: a == b, b == c, c == d, d == e */
1379         .pnum = UINT64_C(0x0002000300040005),
1380         .idx = 0,
1381         .lpv = 4,
1382     },
1383     };
1384 
1385     union {
1386         uint16_t u16[FWDSTEP + 1];
1387         uint64_t u64;
1388     } *pnum = (void *)pn;
1389 
1390     int32_t v;
1391 
1392     dp1 = _mm_cmpeq_epi16(dp1, dp2);    //按照16位一个单元来比较dp1和dp2
1393     dp1 = _mm_unpacklo_epi16(dp1, dp1); //按照16位一个单元将dp1与dp1来结合
1394     v = _mm_movemask_ps((__m128)dp1);   //根据dp1的4个值形成4个位的掩码
1395 
1396     /*更新最后一次端口计数 update last port counter. */
1397     lp[0] += gptbl[v].lpv;
1398 
1399     /*如果转发出口的值已经改变   if dest port value has changed. */
1400     if (v != GRPMSK) {
1401         lp = pnum->u16 + gptbl[v].idx;
1402         lp[0] = 1;
1403         pnum->u64 = gptbl[v].pnum;
1404     }
1405 
1406     return lp;
1407 }
1408 
1409 #endif /* APP_LOOKUP_METHOD */
1410 
1411 /* 线程执行函数  main processing loop */
1412 static int
1413 main_loop(__attribute__((unused)) void *dummy)
1414 {
1415     struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; //32个指针构成的数组
1416     unsigned lcore_id;
1417     uint64_t prev_tsc, diff_tsc, cur_tsc;
1418     int i, j, nb_rx;
1419     uint8_t portid, queueid;
1420     struct lcore_conf *qconf;
1421     const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
1422         US_PER_S * BURST_TX_DRAIN_US;
1423 
1424 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
1425     (ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
1426     int32_t k;
1427     uint16_t dlp; //dlp为lp对应的转发出口编号
1428     uint16_t *lp;  //lp指向pkts_burst中最后一次更新的元素
1429     uint16_t dst_port[MAX_PKT_BURST];  //dst_port是32个数据包的转发出口构成的数组
1430     __m128i dip[MAX_PKT_BURST / FWDSTEP]; //数据包的目的IP地址构成的数组
1431     uint32_t flag[MAX_PKT_BURST / FWDSTEP];
1432     uint16_t pnum[MAX_PKT_BURST + 1]; //转发出口相同的数据包的编号
1433 #endif
1434 
1435     prev_tsc = 0;
1436 
1437     lcore_id = rte_lcore_id(); //获取lcore_id
1438     qconf = &lcore_conf[lcore_id];//获取lcore_id的配置信息
1439 
1440     if (qconf->n_rx_queue == 0) { //如果lcore上没有接收队列
1441         RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
1442         return 0;
1443     }
1444 
1445     RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
1446 
1447     for (i = 0; i < qconf->n_rx_queue; i++) {  //遍历所有的接收队列
1448 
1449         portid = qconf->rx_queue_list[i].port_id; //得到物理端口的编号
1450         queueid = qconf->rx_queue_list[i].queue_id; //得到网卡队列的编号
1451         RTE_LOG(INFO, L3FWD, " -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n", lcore_id,
1452             portid, queueid);
1453     }
1454 
1455     while (1) {  //死循环,体现PMD思想 
1456 
1457         cur_tsc = rte_rdtsc();
1458 
1459         /*
1460          * TX burst queue drain
1461          */
1462         diff_tsc = cur_tsc - prev_tsc;  //计算时间差
1463         if (unlikely(diff_tsc > drain_tsc)) { //如果两次时间差大于定值
1464 
1465             /*
1466              * This could be optimized (use queueid instead of
1467              * portid), but it is not called so often
1468              */
1469             for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {//遍历所有的物理端口
1470                 if (qconf->tx_mbufs[portid].len == 0)
1471                     continue;
1472                 send_burst(qconf,
1473                     qconf->tx_mbufs[portid].len,
1474                     portid);
1475                 qconf->tx_mbufs[portid].len = 0;
1476             }
1477 
1478             prev_tsc = cur_tsc; //记下前一时间
1479         }
1480 
1481         /*  从接收队列中读取数据包
1482          * Read packet from RX queues
1483          */
1484         for (i = 0; i < qconf->n_rx_queue; ++i) {  //遍历所有的接收队列
1485             portid = qconf->rx_queue_list[i].port_id;//得到物理端口的编号
1486             queueid = qconf->rx_queue_list[i].queue_id; //得到网卡队列的编号
1487             nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1488                 MAX_PKT_BURST); //在每个队列上尽量接收32个数据包,用nb_rx记录实际个数
1489             if (nb_rx == 0) //如果一个包也没有收到
1490                 continue;
1491 
1492 #if (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)  //如果支持Intel SSE4.1特性
1493 if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) //如果使用lpm
1494 
1495             k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP); //整除4
1496             for (j = 0; j != k; j += FWDSTEP) { //每次处理4个mbufs
1497                 processx4_step1(&pkts_burst[j],  //从4个mbufs中读取目的ip地址和ol_flags
1498                     &dip[j / FWDSTEP],
1499                     &flag[j / FWDSTEP]);
1500             }
1501 
1502             k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
1503             for (j = 0; j != k; j += FWDSTEP) {//每次处理4个mbufs
1504                 processx4_step2(qconf, dip[j / FWDSTEP], //在LPM中查找转发出口,如果失败则把进入的端口作为转发出口
1505                     flag[j / FWDSTEP], portid,
1506                     &pkts_burst[j], &dst_port[j]);
1507             }
1508 
1509             /* 完成包处理,并根据相同的转发出口来分组连续的数据包
1510              * Finish packet processing and group consecutive
1511              * packets with the same destination port.
1512              */
1513             k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);//处理成4的幂
1514             if (k != 0) {  
1515                 __m128i dp1, dp2;
1516 
1517                 lp = pnum;
1518                 lp[0] = 1;
1519 
1520                 processx4_step3(pkts_burst, dst_port); //更新目的mac和源mac地址
1521 
1522                 /* dp1: <d[0], d[1], d[2], d[3], ... > */
1523                 dp1 = _mm_loadu_si128((__m128i *)dst_port); //把目的端口加载到寄存器dp1中
1524 
1525                 for (j = FWDSTEP; j != k; j += FWDSTEP) { //每次处理4个mbufs
1526                     processx4_step3(&pkts_burst[j], //更新目的mac和源mac地址
1527                         &dst_port[j]);
1528 
1529                     /*
1530                      * dp2:
1531                      * <d[j-3], d[j-2], d[j-1], d[j], ... >
1532                      */
1533                     dp2 = _mm_loadu_si128((__m128i *) //返回一个__m128i的寄存器
1534                         &dst_port[j - FWDSTEP + 1]);
1535                     lp  = port_groupx4(&pnum[j - FWDSTEP], //把出口相同的4个数据包构成一组
1536                         lp, dp1, dp2);
1537 
1538                     /*
1539                      * dp1:
1540                      * <d[j], d[j+1], d[j+2], d[j+3], ... >
1541                      */
1542                     dp1 = _mm_srli_si128(dp2,  //逻辑左移3*16位,返回一个__m128i的寄存器
1543                         (FWDSTEP - 1) *
1544                         sizeof(dst_port[0]));
1545                 }
1546 
1547                 /*
1548                  * dp2: <d[j-3], d[j-2], d[j-1], d[j-1], ... >
1549                  */
1550                 dp2 = _mm_shufflelo_epi16(dp1, 0xf9);  //重新排序,返回一个__m128i的寄存器
1551                 lp  = port_groupx4(&pnum[j - FWDSTEP], lp, //把4个连续分组按照目的端口分组
1552                     dp1, dp2);
1553 
1554                 /*
1555                  * remove values added by the last repeated
1556                  * dst port.
1557                  */
1558                 lp[0]--;
1559                 dlp = dst_port[j - 1];
1560             } else {
1561                 /* set dlp and lp to the never used values. */
1562                 dlp = BAD_PORT - 1;
1563                 lp = pnum + MAX_PKT_BURST;
1564             }
1565 
1566             /*处理最后的三个分组 Process up to last 3 packets one by one. */
1567             switch (nb_rx % FWDSTEP) {  
1568             case 3: //第三个mbuf
1569                 process_packet(qconf, pkts_burst[j],
1570                     dst_port + j, portid);
1571                 GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
1572                 j++;
1573             case 2://第二个mbuf
1574                 process_packet(qconf, pkts_burst[j],
1575                     dst_port + j, portid);
1576                 GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
1577                 j++;
1578             case 1://第一个mbuf
1579                 process_packet(qconf, pkts_burst[j],
1580                     dst_port + j, portid);
1581                 GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
1582                 j++;
1583             }
1584 
1585             /*通过目的端口把数据包都发出去,这些数据包之前已经组合好了的
1586              * Send packets out, through destination port.
1587              * Consecuteve pacekts with the same destination port
1588              * are already grouped together.
1589              * If destination port for the packet equals BAD_PORT,
1590              * then free the packet without sending it out.
1591              */
1592             for (j = 0; j < nb_rx; j += k) {  //遍历接收到的数据包
1593 
1594                 int32_t m;
1595                 uint16_t pn;
1596 
1597                 pn = dst_port[j]; 
1598                 k = pnum[j];
1599 
1600                 if (likely(pn != BAD_PORT)) {
1601                     send_packetsx4(qconf, pn,  //把待发送的数据包放到发送缓冲区中,累积到32个再发出去
1602                         pkts_burst + j, k);
1603                 } else {
1604                     for (m = j; m != j + k; m++)
1605                         rte_pktmbuf_free(pkts_burst[m]);
1606                 }
1607             }
1608 
1609 #endif /* APP_LOOKUP_METHOD */
1610 #else /*如果不支持Intel SSE4.1特性   ENABLE_MULTI_BUFFER_OPTIMIZE == 0 */
1611 
1612             /*预取接收队列上的第一个数据包    Prefetch first packets */
1613             for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1614                 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[j], void *));
1615             }
1616 
1617             /*预取和转发已经预取的数据包     Prefetch and forward already prefetched packets */
1618             for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1619                 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1620                         j + PREFETCH_OFFSET], void *));
1621                 l3fwd_simple_forward(pkts_burst[j], portid, qconf);//简单转发4倍数的数据包
1622                     
1623             }
1624 
1625             /*转发正在预取的数据包    Forward remaining prefetched packets */
1626             for (; j < nb_rx; j++) {
1627                 l3fwd_simple_forward(pkts_burst[j], portid, qconf);//简单转发剩余几个数据包
1628                     
1629             }
1630 #endif /* ENABLE_MULTI_BUFFER_OPTIMIZE */
1631 
1632         } //for (i = 0; i < qconf->n_rx_queue; ++i)
1633     } //while (1)
1634 }//end of main_loop
1635 
1636 static int  //检查lcore的参数
1637 check_lcore_params(void)
1638 {
1639     uint8_t queue, lcore;
1640     uint16_t i;
1641     int socketid;
1642 
1643     for (i = 0; i < nb_lcore_params; ++i) { //遍历lcores的参数表
1644         queue = lcore_params[i].queue_id;
1645         if (queue >= MAX_RX_QUEUE_PER_PORT) { //如果队列编号大于128
1646             printf("invalid queue number: %hhu\n", queue);
1647             return -1;
1648         }
1649         lcore = lcore_params[i].lcore_id;
1650         if (!rte_lcore_is_enabled(lcore)) { //如果lcore没有启用
1651             printf("error: lcore %hhu is not enabled in lcore mask\n", lcore);
1652             return -1;
1653         }
1654         if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
1655             (numa_on == 0)) { //如果numa关闭
1656             printf("warning: lcore %hhu is on socket %d with numa off \n",
1657                 lcore, socketid);
1658         }
1659     }
1660     return 0;
1661 }
1662 
1663 static int  //检查物理端口的配置
1664 check_port_config(const unsigned nb_ports)
1665 {
1666     unsigned portid;
1667     uint16_t i;
1668 
1669     for (i = 0; i < nb_lcore_params; ++i) {  //遍历lcores的参数表
1670         portid = lcore_params[i].port_id;
1671         if ((enabled_port_mask & (1 << portid)) == 0) {
1672             printf("port %u is not enabled in port mask\n", portid);
1673             return -1;
1674         }
1675         if (portid >= nb_ports) {
1676             printf("port %u is not present on the board\n", portid);
1677             return -1;
1678         }
1679     }
1680     return 0;
1681 }
1682 
1683 static uint8_t   //获取物理端口上的接收队列数量
1684 get_port_n_rx_queues(const uint8_t port) //其实就是取queue_id最大值加1
1685 {
1686     int queue = -1;
1687     uint16_t i;
1688 
1689     for (i = 0; i < nb_lcore_params; ++i) { //遍历lcores的参数表
1690         if (lcore_params[i].port_id == port && lcore_params[i].queue_id > queue)
1691             queue = lcore_params[i].queue_id;//获取queue_id值
1692     }
1693     return (uint8_t)(++queue); //因为queue_id从0开始
1694 }
1695 
1696 static int //初始化lcore上的接收队列
1697 init_lcore_rx_queues(void)
1698 {
1699     uint16_t i, nb_rx_queue;
1700     uint8_t lcore;
1701 
1702     for (i = 0; i < nb_lcore_params; ++i) {//遍历lcores的参数表
1703         lcore = lcore_params[i].lcore_id;
1704         nb_rx_queue = lcore_conf[lcore].n_rx_queue;
1705         if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {//如果接收队列总数大于128
1706             printf("error: too many queues (%u) for lcore: %u\n",
1707                 (unsigned)nb_rx_queue + 1, (unsigned)lcore);
1708             return -1;
1709         } else {
1710             lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1711                 lcore_params[i].port_id;  //记录port_id
1712             lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1713                 lcore_params[i].queue_id; //记录queue_id
1714             lcore_conf[lcore].n_rx_queue++;//lcore上接收队列的数量加1
1715         }
1716     }
1717     return 0;
1718 }
1719 
1720 /* display usage  */
1721 static void   //打印使用说明
1722 print_usage(const char *prgname)
1723 {
1724     printf ("%s [EAL options] -- -p PORTMASK -P"
1725         "  [--config (port,queue,lcore)[,(port,queue,lcore]]"
1726         "  [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
1727         "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
1728         "  -P : enable promiscuous mode\n"
1729         "  --config (port,queue,lcore): rx queues configuration\n"
1730         "  --no-numa: optional, disable numa awareness\n"
1731         "  --ipv6: optional, specify it if running ipv6 packets\n"
1732         "  --enable-jumbo: enable jumbo frame"
1733         " which max packet len is PKTLEN in decimal (64-9600)\n"
1734         "  --hash-entry-num: specify the hash entry number in hexadecimal to be setup\n",
1735         prgname);
1736 }
1737             
1738 static int   //分析数据包的长度
1739 parse_max_pkt_len(const char *pktlen) 
1740 {
1741     char *end = NULL;
1742     unsigned long len;
1743 
1744     /* parse decimal string */
1745     len = strtoul(pktlen, &end, 10); //把字符串转换成十进制数字
1746     if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
1747         return -1;
1748 
1749     if (len == 0)
1750         return -1;
1751 
1752     return len;
1753 }
1754 
1755 static int  //分析物理端口的掩码
1756 parse_portmask(const char *portmask)
1757 {
1758     char *end = NULL;
1759     unsigned long pm;
1760 
1761     /* parse hexadecimal string */
1762     pm = strtoul(portmask, &end, 16);//字符串转换为十六进制的数字
1763     if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1764         return -1;
1765 
1766     if (pm == 0)
1767         return -1;
1768 
1769     return pm;
1770 }
1771 
1772 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1773 static int
1774 parse_hash_entry_number(const char *hash_entry_num)
1775 {
1776     char *end = NULL;
1777     unsigned long hash_en;
1778     /* parse hexadecimal string */
1779     hash_en = strtoul(hash_entry_num, &end, 16);
1780     if ((hash_entry_num[0] == '\0') || (end == NULL) || (*end != '\0'))
1781         return -1;
1782 
1783     if (hash_en == 0)
1784         return -1;
1785 
1786     return hash_en;
1787 }
1788 #endif
1789 
1790 static int  //分析参数中的配置
1791 parse_config(const char *q_arg)
1792 {
1793     char s[256];
1794     const char *p, *p0 = q_arg;
1795     char *end;
1796     enum fieldnames {
1797         FLD_PORT = 0,
1798         FLD_QUEUE,
1799         FLD_LCORE,
1800         _NUM_FLD
1801     };
1802     unsigned long int_fld[_NUM_FLD];
1803     char *str_fld[_NUM_FLD];
1804     int i;
1805     unsigned size;
1806 
1807     nb_lcore_params = 0; //数组的元素个数初始化为0
1808               //举例: --config="(0,0,1),(0,1,2),(1,0,1),(1,1,3)"
1809     while ((p = strchr(p0,'(')) != NULL) {  //找到左括号的位置,并赋值给p,除非找不到左括号才结束while循环
1810         ++p;
1811         if((p0 = strchr(p,')')) == NULL) //找到有括号的位置,并赋值给p0
1812             return -1;
1813 
1814         size = p0 - p; //计算括号内的字符串长度
1815         if(size >= sizeof(s))
1816             return -1;
1817 
1818         snprintf(s, sizeof(s), "%.*s", size, p); //按照size宽度拼接字符串s
1819         if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD)//分割字符串s到str_fld中
1820             return -1;
1821         for (i = 0; i < _NUM_FLD; i++){//遍历各个成员
1822             errno = 0;
1823             int_fld[i] = strtoul(str_fld[i], &end, 0);//获取port_id、queue_id、lcore_id成员的值
1824             if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1825                 return -1;
1826         }
1827         if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1828             printf("exceeded max number of lcore params: %hu\n",
1829                 nb_lcore_params);
1830             return -1;
1831         }
1832         lcore_params_array[nb_lcore_params].port_id = (uint8_t)int_fld[FLD_PORT];//赋值port_id
1833         lcore_params_array[nb_lcore_params].queue_id = (uint8_t)int_fld[FLD_QUEUE];//赋值queue_id
1834         lcore_params_array[nb_lcore_params].lcore_id = (uint8_t)int_fld[FLD_LCORE];//赋值lcore_id
1835         ++nb_lcore_params; //数组的元素个数自增
1836     }
1837     lcore_params = lcore_params_array;//使用新配置,抛弃默认配置
1838     return 0;
1839 }
1840 
1841 #define CMD_LINE_OPT_CONFIG "config"
1842 #define CMD_LINE_OPT_NO_NUMA "no-numa"
1843 #define CMD_LINE_OPT_IPV6 "ipv6"
1844 #define CMD_LINE_OPT_ENABLE_JUMBO "enable-jumbo"
1845 #define CMD_LINE_OPT_HASH_ENTRY_NUM "hash-entry-num"
1846 
1847 /* Parse the argument given in the command line of the application */
1848 static int   //分析l3fwd相关的参数
1849 parse_args(int argc, char **argv)
1850 {
1851     int opt, ret;
1852     char **argvopt;
1853     int option_index;
1854     char *prgname = argv[0];
1855     static struct option lgopts[] = {
1856         {CMD_LINE_OPT_CONFIG, 1, 0, 0}, //config参数对应于case 0
1857         {CMD_LINE_OPT_NO_NUMA, 0, 0, 0},
1858         {CMD_LINE_OPT_IPV6, 0, 0, 0},
1859         {CMD_LINE_OPT_ENABLE_JUMBO, 0, 0, 0},
1860         {CMD_LINE_OPT_HASH_ENTRY_NUM, 1, 0, 0},
1861         {NULL, 0, 0, 0}//应该可以在这个地方加上kni_config命令字
1862         
1863     };
1864 
1865     argvopt = argv;
1866 
1867     while ((opt = getopt_long(argc, argvopt, "p:P",
1868                 lgopts, &option_index)) != EOF) {
1869 
1870         switch (opt) {
1871         /* portmask   物理端口的掩码*/
1872         case 'p':
1873             enabled_port_mask = parse_portmask(optarg);//optarg为指向当前选项参数的指针
1874             if (enabled_port_mask == 0) {
1875                 printf("invalid portmask\n");
1876                 print_usage(prgname);
1877                 return -1;
1878             }
1879             break;
1880         case 'P': //混杂模式
1881             printf("Promiscuous mode selected\n");
1882             promiscuous_on = 1;
1883             break;
1884 
1885         /* long options    解析长选项   */
1886         case 0:
1887             if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_CONFIG,
1888                 sizeof (CMD_LINE_OPT_CONFIG))) {  //参数config
1889                 ret = parse_config(optarg);//解析()中的参数
1890                 if (ret) {
1891                     printf("invalid config\n");
1892                     print_usage(prgname);
1893                     return -1;
1894                 }
1895             }
1896 
1897             if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_NO_NUMA,
1898                 sizeof(CMD_LINE_OPT_NO_NUMA))) { //参数no-numa
1899                 printf("numa is disabled \n");
1900                 numa_on = 0;
1901             }
1902 
1903 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1904             if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_IPV6,
1905                 sizeof(CMD_LINE_OPT_IPV6))) {   //参数ipv6
1906                 printf("ipv6 is specified \n");
1907                 ipv6 = 1;
1908             }
1909 #endif
1910 
1911             if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ENABLE_JUMBO,
1912                 sizeof (CMD_LINE_OPT_ENABLE_JUMBO))) {//参数enable-jumbo
1913                 struct option lenopts = {"max-pkt-len", required_argument, 0, 0};
1914 
1915                 printf("jumbo frame is enabled - disabling simple TX path\n");
1916                 port_conf.rxmode.jumbo_frame = 1;
1917 
1918                 /* if no max-pkt-len set, use the default value ETHER_MAX_LEN */
1919                 if (0 == getopt_long(argc, argvopt, "", &lenopts, &option_index)) {
1920                     ret = parse_max_pkt_len(optarg);  //分析数据包的长度
1921                     if ((ret < 64) || (ret > MAX_JUMBO_PKT_LEN)){
1922                         printf("invalid packet length\n");
1923                         print_usage(prgname);
1924                         return -1;
1925                     }
1926                     port_conf.rxmode.max_rx_pkt_len = ret;
1927                 }
1928                 printf("set jumbo frame max packet length to %u\n",
1929                         (unsigned int)port_conf.rxmode.max_rx_pkt_len);
1930             }
1931 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1932             if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_HASH_ENTRY_NUM,
1933                 sizeof(CMD_LINE_OPT_HASH_ENTRY_NUM))) {//参数hash-entry-num
1934                 ret = parse_hash_entry_number(optarg);
1935                 if ((ret > 0) && (ret <= L3FWD_HASH_ENTRIES)) {
1936                     hash_entry_number = ret;
1937                 } else {
1938                     printf("invalid hash entry number\n");
1939                     print_usage(prgname);
1940                     return -1;
1941                 }
1942             }
1943 #endif
1944             break;
1945 
1946         default:
1947             print_usage(prgname);
1948             return -1;
1949         }
1950     }
1951 
1952     if (optind >= 0)
1953         argv[optind-1] = prgname;
1954 
1955     ret = optind-1;
1956     optind = 0; /* optind是下一个选项的索引     reset getopt lib */
1957     return ret;
1958 }
1959 
1960 static void  //打印mac地址
1961 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1962 {
1963     char buf[ETHER_ADDR_FMT_SIZE];
1964     ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
1965     printf("%s%s", name, buf);
1966 }
1967 
1968 
1969 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1970 static void  //创建LPM
1971 setup_lpm(int socketid)
1972 {
1973     struct rte_lpm6_config config;
1974     unsigned i;
1975     int ret;
1976     char s[64];
1977 
1978     /* 创建LPM ipv4表   create the LPM table  */
1979     snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
1980     ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid,
1981                 IPV4_L3FWD_LPM_MAX_RULES, 0);
1982     if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1983         rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
1984                 " on socket %d\n", socketid);
1985 
1986     /* 填充ipv4 LPM表     populate the LPM table   */
1987 
1988     for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {//遍历已经配置的所有的规则
1989 
1990         /* skip unused ports  跳过未使用的物理端口*/
1991         if ((1 << ipv4_l3fwd_route_array[i].if_out &
1992                 enabled_port_mask) == 0)
1993             continue;
1994  
1995         
1996                   //添加一条路由,即把规则转换为tbl24或者tbl8
1997         ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
1998             ipv4_l3fwd_route_array[i].ip,
1999             ipv4_l3fwd_route_array[i].depth,
2000             ipv4_l3fwd_route_array[i].if_out);
2001 
2002         if (ret < 0) { //如果添加路由失败
2003             rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
2004                 "l3fwd LPM table on socket %d\n",
2005                 i, socketid);
2006         }
2007 
2008         printf("LPM: Adding route 0x%08x / %d (%d)\n",
2009             (unsigned)ipv4_l3fwd_route_array[i].ip,
2010             ipv4_l3fwd_route_array[i].depth,
2011             ipv4_l3fwd_route_array[i].if_out);
2012     }
2013 
2014     /* 创建lpm ipv6表     create the LPM6 table */
2015     snprintf(s, sizeof(s), "IPV6_L3FWD_LPM_%d", socketid);
2016 
2017     config.max_rules = IPV6_L3FWD_LPM_MAX_RULES;
2018     config.number_tbl8s = IPV6_L3FWD_LPM_NUMBER_TBL8S;
2019     config.flags = 0;
2020     ipv6_l3fwd_lookup_struct[socketid] = rte_lpm6_create(s, socketid,
2021                 &config);
2022     if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
2023         rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
2024                 " on socket %d\n", socketid);
2025 
2026     /* 填充LPM ipv6表     populate the LPM table     */
2027     for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
2028 
2029         /* skip unused ports */
2030         if ((1 << ipv6_l3fwd_route_array[i].if_out &
2031                 enabled_port_mask) == 0)
2032             continue;
2033 
2034         ret = rte_lpm6_add(ipv6_l3fwd_lookup_struct[socketid],
2035             ipv6_l3fwd_route_array[i].ip,
2036             ipv6_l3fwd_route_array[i].depth,
2037             ipv6_l3fwd_route_array[i].if_out);
2038 
2039         if (ret < 0) {
2040             rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
2041                 "l3fwd LPM table on socket %d\n",
2042                 i, socketid);
2043         }
2044 
2045         printf("LPM: Adding route %s / %d (%d)\n",
2046             "IPV6",
2047             ipv6_l3fwd_route_array[i].depth,
2048             ipv6_l3fwd_route_array[i].if_out);
2049     }
2050 }
2051 #endif
2052 
2053 static int  //初始化内存
2054 init_mem(unsigned nb_mbuf)
2055 {
2056     struct lcore_conf *qconf;
2057     int socketid;
2058     unsigned lcore_id;
2059     char s[64];
2060 
2061     for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {//遍历所有lcores
2062         if (rte_lcore_is_enabled(lcore_id) == 0)
2063             continue;
2064 
2065         if (numa_on)  //一般开启了numa
2066             socketid = rte_lcore_to_socket_id(lcore_id);//得到lcore所在的socketid
2067         else
2068             socketid = 0; //默认socketid为0
2069 
2070         if (socketid >= NB_SOCKETS) {
2071             rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is out of range %d\n",
2072                 socketid, lcore_id, NB_SOCKETS);
2073         }
2074         if (pktmbuf_pool[socketid] == NULL) {  
2075             snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
2076             pktmbuf_pool[socketid] =  //为每一个socket创建mempool用来动态分配mbufs
2077                 rte_mempool_create(s, nb_mbuf, MBUF_SIZE, MEMPOOL_CACHE_SIZE,
2078                     sizeof(struct rte_pktmbuf_pool_private),
2079                     rte_pktmbuf_pool_init, NULL,
2080                     rte_pktmbuf_init, NULL,
2081                     socketid, 0);  
2082             if (pktmbuf_pool[socketid] == NULL)
2083                 rte_exit(EXIT_FAILURE,
2084                         "Cannot init mbuf pool on socket %d\n", socketid);
2085             else
2086                 printf("Allocated mbuf pool on socket %d\n", socketid);
2087 
2088 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2089             setup_lpm(socketid);  //创建LPM表,只需给每个socket cpu创建一个LPM表,而同一个CPU上的lcores共享LPM
2090 #else
2091             setup_hash(socketid); //创建Hash表
2092 #endif
2093         }
2094         qconf = &lcore_conf[lcore_id];
2095         qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
2096         qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
2097     }
2098     return 0;
2099 }
2100 
2101 /* Check the link status of all ports in up to 9s, and print them finally */
2102 static void  //检查物理端口的连接状态
2103 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
2104 {
2105 #define CHECK_INTERVAL 100 /* 100ms */
2106 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
2107     uint8_t portid, count, all_ports_up, print_flag = 0;
2108     struct rte_eth_link link;
2109 
2110     printf("\nChecking link status");
2111     fflush(stdout);
2112     for (count = 0; count <= MAX_CHECK_TIME; count++) {//最多执行9000次
2113         all_ports_up = 1;
2114         for (portid = 0; portid < port_num; portid++) {//遍历物理端口
2115             if ((port_mask & (1 << portid)) == 0)
2116                 continue;
2117             memset(&link, 0, sizeof(link));
2118             rte_eth_link_get_nowait(portid, &link);
2119             /* print link status if flag set */
2120             if (print_flag == 1) {
2121                 if (link.link_status)
2122                     printf("Port %d Link Up - speed %u "
2123                         "Mbps - %s\n", (uint8_t)portid,
2124                         (unsigned)link.link_speed,
2125                 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
2126                     ("full-duplex") : ("half-duplex\n"));
2127                 else
2128                     printf("Port %d Link Down\n",
2129                         (uint8_t)portid);
2130                 continue;
2131             }
2132             /* clear all_ports_up flag if any link down */
2133             if (link.link_status == 0) {
2134                 all_ports_up = 0;
2135                 break;
2136             }
2137         }
2138         /* after finally printing all link status, get out */
2139         if (print_flag == 1)
2140             break;
2141 
2142         if (all_ports_up == 0) {
2143             printf(".");
2144             fflush(stdout);
2145             rte_delay_ms(CHECK_INTERVAL);
2146         }
2147 
2148         /* set the print_flag if all ports up or timeout */
2149         if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
2150             print_flag = 1;
2151             printf("done\n");
2152         }
2153     }
2154 }
2155 
2156 int //主函数
2157 main(int argc, char **argv)
2158 {
2159     struct lcore_conf *qconf;
2160     struct rte_eth_dev_info dev_info;
2161     struct rte_eth_txconf *txconf;
2162     int ret;
2163     unsigned nb_ports;
2164     uint16_t queueid;
2165     unsigned lcore_id;
2166     uint32_t n_tx_queue, nb_lcores;
2167     uint8_t portid, nb_rx_queue, queue, socketid;
2168 
2169     /* init EAL */
2170     ret = rte_eal_init(argc, argv); //初始化软件抽象层,并解析EAL有关参数
2171     if (ret < 0)
2172         rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2173     argc -= ret; //减少参数个数
2174     argv += ret; //移动参数位置
2175 
2176     /* parse application arguments (after the EAL ones) */
2177     ret = parse_args(argc, argv); //解析l3fwd有关参数: -p -P --config  
2178     if (ret < 0)
2179         rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
2180 
2181     if (check_lcore_params() < 0) //检查lcore参数
2182         rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
2183 
2184     ret = init_lcore_rx_queues(); //初始化每个lcore上的rx queue数量
2185     if (ret < 0)
2186         rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2187 
2188     nb_ports = rte_eth_dev_count();  //获取物理端口的个数
2189     if (nb_ports > RTE_MAX_ETHPORTS) //如果超过32个
2190         nb_ports = RTE_MAX_ETHPORTS;
2191 
2192     if (check_port_config(nb_ports) < 0) //检查物理端口的配置
2193         rte_exit(EXIT_FAILURE, "check_port_config failed\n");
2194 
2195     nb_lcores = rte_lcore_count(); //获取启用的lcores的总个数
2196 
2197 
2198     /* initialize all ports   初始化所有的物理端口 */
2199     for (portid = 0; portid < nb_ports; portid++) { //遍历所有的物理端口
2200         /* skip ports that are not enabled 跳过没有启用的物理端口 */
2201         if ((enabled_port_mask & (1 << portid)) == 0) {
2202             printf("\nSkipping disabled port %d\n", portid);
2203             continue;
2204         }
2205 
2206         /* init port   初始化物理端口*/
2207         printf("Initializing port %d ... ", portid );
2208         fflush(stdout); //清空标准输出(屏幕)的缓冲区,这样就能立即在屏幕上看到打印信息
2209 
2210         nb_rx_queue = get_port_n_rx_queues(portid);  //获取portid上的接收队列的个数
2211         n_tx_queue = nb_lcores;   //设定portid上的发送队列的个数为启用的lcores的个数
2212         if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)  //如果发送队列的数量超过16个
2213             n_tx_queue = MAX_TX_QUEUE_PER_PORT;
2214         printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
2215             nb_rx_queue, (unsigned)n_tx_queue ); //这里是不是有点粗暴啊?????
2216         ret = rte_eth_dev_configure(portid, nb_rx_queue,  //第一步,配置网络设备
2217                     (uint16_t)n_tx_queue, &port_conf);
2218         if (ret < 0) //如果配置设备失败
2219             rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
2220                 ret, portid);
2221 
2222         rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); //记录mac地址到ports_eth_addr[portid]
2223         print_ethaddr(" Address:", &ports_eth_addr[portid]);
2224         printf(", ");
2225 
2226         /*  为每一个物理端口准备着源mac地址和目的mac地址
2227          * prepare dst and src MACs for each port.
2228          */
2229         *(uint64_t *)(val_eth + portid) =
2230             ETHER_LOCAL_ADMIN_ADDR + ((uint64_t)portid << 40);
2231         ether_addr_copy(&ports_eth_addr[portid],    //前一个参数为from,后一个为to
2232             (struct ether_addr *)(val_eth + portid) + 1); 
2233         /* init memory 分配内存并创建LPM或者hash  */
2234         ret = init_mem(NB_MBUF); //mempool包含8192个元素
2235         if (ret < 0)
2236             rte_exit(EXIT_FAILURE, "init_mem failed\n");
2237 
2238         /*初始化一个发送队列成一对(lcore, port)    init one TX queue per couple (lcore,port) */
2239         queueid = 0;
2240         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { //遍历一个物理接口上的所有的lcores
2241             if (rte_lcore_is_enabled(lcore_id) == 0) //忽略未启用的lcore
2242                 continue;
2243 
2244             if (numa_on)//如果启用numa
2245                 socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id); //获取lcore_id所在的socketid
2246             else
2247                 socketid = 0;//默认socketid为0
2248 
2249             printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
2250             fflush(stdout);//清空标准输出(屏幕)的缓冲区
2251 
2252             rte_eth_dev_info_get(portid, &dev_info);//获取设备信息
2253             txconf = &dev_info.default_txconf;//得到发送的配置结构体指针
2254             if (port_conf.rxmode.jumbo_frame)
2255                 txconf->txq_flags = 0;
2256             ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, //第二步,建立发送队列
2257                              socketid, txconf); //一个port上可能有多个queue,每个queue用一个lcore来绑定
2258             if (ret < 0)
2259                 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
2260                     "port=%d\n", ret, portid);
2261 
2262             qconf = &lcore_conf[lcore_id]; //得到lcore_id的配置结构体指针
2263             qconf->tx_queue_id[portid] = queueid; //记录发送队列的编号到lcore_conf中
2264             queueid++;  //发送队列的编号自增
2265         }  //end of for(lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
2266         printf("\n");
2267     }  //end of for(portid = 0; portid < nb_ports; portid++) 
2268 
2269     for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { //遍历所有的lcores
2270         if (rte_lcore_is_enabled(lcore_id) == 0)
2271             continue;  //忽略未启用的lcore
2272         qconf = &lcore_conf[lcore_id];
2273         printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
2274         fflush(stdout);
2275         /* init RX queues  初始化接收队列 */
2276         for(queue = 0; queue < qconf->n_rx_queue; ++queue) { //遍历所有的接收队列
2277             portid = qconf->rx_queue_list[queue].port_id;  //物理端口的编号
2278             queueid = qconf->rx_queue_list[queue].queue_id;//接收队列的编号
2279 
2280             if (numa_on)//一般启用numa
2281                 socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id);//获取lcore_id所在的socketid
2282             else 
2283                 socketid = 0;//默认socketid为0
2284 
2285             printf("rxq=%d,%d,%d ", portid, queueid, socketid);
2286             fflush(stdout);//清空标准输出(屏幕)的缓冲区
2287 
2288             ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, //第三步,建立接收队列
2289                     socketid, //一个port上可能有多个queue,每个queue用一个lcore来绑定
2290                     NULL,
2291                     pktmbuf_pool[socketid]);
2292             if (ret < 0)
2293                 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d,"
2294                         "port=%d\n", ret, portid);
2295         } //for(queue = 0; queue < qconf->n_rx_queue; ++queue)
2296     }//for(lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
2297 
2298     printf("\n");
2299 
2300     /* start ports    启动物理端口 */
2301     for (portid = 0; portid < nb_ports; portid++) {  //遍历所有的物理端口
2302         if ((enabled_port_mask & (1 << portid)) == 0) { 
2303             continue;  //忽略未启用的物理端口
2304         }
2305         /* Start device    启动设备  */
2306         ret = rte_eth_dev_start(portid);  //第四步,启动物理端口
2307         if (ret < 0)
2308             rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
2309                 ret, portid);
2310 
2311         /*
2312          * If enabled, put device in promiscuous mode.
2313          * This allows IO forwarding mode to forward packets
2314          * to itself through 2 cross-connected  ports of the
2315          * target machine.
2316          */
2317         if (promiscuous_on) //如果开始混杂模式
2318             rte_eth_promiscuous_enable(portid); //启动混杂模式
2319     }//end of for (portid = 0; portid < nb_ports; portid++) 
2320 
2321     check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
2322 
2323     /* launch per-lcore init on every lcore 在每一个lcore上至多启动一个线程  */
2324     rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);//CALL_MASTER表示在master也会启动线程
2325     RTE_LCORE_FOREACH_SLAVE(lcore_id) { //遍历每个slave lcore
2326         if (rte_eal_wait_lcore(lcore_id) < 0) //等待线程结束
2327             return -1;
2328     }
2329 
2330     return 0;
2331 }

 

posted on 2015-07-15 11:17  mylinuxer  阅读(7899)  评论(0编辑  收藏  举报