Java锁的种类以及辨析(二):自旋锁的其他种类

作者:山鸡

锁作为并发共享数据,保证一致性的工具,在JAVA平台有多种实现(如 synchronized 和 ReentrantLock等等 ) 。这些已经写好提供的锁为我们开发提供了便利,但是锁的具体性质以及类型却很少被提及。本系列文章将分析JAVA下常见的锁名称以及特性,为大家答疑解惑。

 

2.自旋锁的其他种类

上篇我们讲到了自旋锁,在自旋锁中 另有三种常见的锁形式:TicketLock ,CLHlock 和MCSlock

Ticket锁主要解决的是访问顺序的问题,主要的问题是在多核cpu上

复制代码
package com.alipay.titan.dcc.dal.entity;

import java.util.concurrent.atomic.AtomicInteger;

public class TicketLock {
    private AtomicInteger                     serviceNum = new AtomicInteger();
    private AtomicInteger                     ticketNum  = new AtomicInteger();
    private static final ThreadLocal<Integer> LOCAL      = new ThreadLocal<Integer>();

    public void lock() {
        int myticket = ticketNum.getAndIncrement();
        LOCAL.set(myticket);
        while (myticket != serviceNum.get()) {
        }

    }

    public void unlock() {
        int myticket = LOCAL.get();
        serviceNum.compareAndSet(myticket, myticket + 1);
    }
}
复制代码

 

每次都要查询一个serviceNum 服务号,影响性能(必须要到主内存读取,并阻止其他cpu修改)。

CLHLock 和MCSLock 则是两种类型相似的公平锁,采用链表的形式进行排序,

复制代码
 1 import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;
 2 
 3 public class CLHLock {
 4     public static class CLHNode {
 5         private volatile boolean isLocked = true;
 6     }
 7 
 8     @SuppressWarnings("unused")
 9     private volatile CLHNode                                           tail;
10     private static final ThreadLocal<CLHNode>                          LOCAL   = new ThreadLocal<CLHNode>();
11     private static final AtomicReferenceFieldUpdater<CLHLock, CLHNode> UPDATER = AtomicReferenceFieldUpdater.newUpdater(CLHLock.class,
12                                                                                    CLHNode.class, "tail");
13 
14     public void lock() {
15         CLHNode node = new CLHNode();
16         LOCAL.set(node);
17         CLHNode preNode = UPDATER.getAndSet(this, node);
18         if (preNode != null) {
19             while (preNode.isLocked) {
20             }
21             preNode = null;
22             LOCAL.set(node);
23         }
24     }
25 
26     public void unlock() {
27         CLHNode node = LOCAL.get();
28         if (!UPDATER.compareAndSet(this, node, null)) {
29             node.isLocked = false;
30         }
31         node = null;
32     }
33 }
复制代码

 

CLHlock是不停的查询前驱变量, 导致不适合在NUMA 架构下使用(在这种结构下,每个线程分布在不同的物理内存区域)

MCSLock则是对本地变量的节点进行循环。不存在CLHlock 的问题。

复制代码
 1 import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;
 2 
 3 public class MCSLock {
 4     public static class MCSNode {
 5         volatile MCSNode next;
 6         volatile boolean isLocked = true;
 7     }
 8 
 9     private static final ThreadLocal<MCSNode>                          NODE    = new ThreadLocal<MCSNode>();
10     @SuppressWarnings("unused")
11     private volatile MCSNode                                           queue;
12     private static final AtomicReferenceFieldUpdater<MCSLock, MCSNode> UPDATER = AtomicReferenceFieldUpdater.newUpdater(MCSLock.class,
13                                                                                    MCSNode.class, "queue");
14 
15     public void lock() {
16         MCSNode currentNode = new MCSNode();
17         NODE.set(currentNode);
18         MCSNode preNode = UPDATER.getAndSet(this, currentNode);
19         if (preNode != null) {
20             preNode.next = currentNode;
21             while (currentNode.isLocked) {
22 
23             }
24         }
25     }
26 
27     public void unlock() {
28         MCSNode currentNode = NODE.get();
29         if (currentNode.next == null) {
30             if (UPDATER.compareAndSet(this, currentNode, null)) {
31 
32             } else {
33                 while (currentNode.next == null) {
34                 }
35             }
36         } else {
37             currentNode.next.isLocked = false;
38             currentNode.next = null;
39         }
40     }
41 }
复制代码

 

从代码上 看,CLH 要比 MCS 更简单,

CLH 的队列是隐式的队列,没有真实的后继结点属性。

MCS 的队列是显式的队列,有真实的后继结点属性。

JUC ReentrantLock 默认内部使用的锁 即是 CLH锁(有很多改进的地方,将自旋锁换成了阻塞锁等等)。

posted on   myf008  阅读(229)  评论(0编辑  收藏  举报

编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· C#/.NET/.NET Core技术前沿周刊 | 第 29 期(2025年3.1-3.9)
· 从HTTP原因短语缺失研究HTTP/2和HTTP/3的设计差异

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
点击右上角即可分享
微信分享提示