NYOJ 469 擅长排列的小明 II (dp问题)
地址:http://acm.nyist.net/JudgeOnline/problem.php?pid=469
思路:动态规划dp
题目分析:
由于第一个只能是1,则第二个数只能是2,3
当第二个数是2时,则相当于是对2-n的排列,相当于对1-(n-1)的排列,即s[n-1];
当第二个数是3时,第三个数只能是2,4,5
此时,当第三个数为2时,则是对3-n的排列,相当于对1-(n-3)的排列,即s[n-3]
当第三个数为4时,此时,第四个数只能是2,除了n等于4时,对于n大于4的排列,都不符合要求,
而n为4时,与第三个数为5时的排列相同,所以, 可认为第三个数为4时不符合要求,
当第三个数为5时,只有一种情况,1,3,5,6,7,9,……,10,8,6,4,2,
所以,可得递推公式,s[i]=s[i-1]+s[i-3]+1.初始化s[]={0,1,1,2}
代码如下:
1 #include <stdio.h> 2 int main() 3 { 4 int n,dp[57]={0,1,1,2}; 5 for(int i=4;i<=55;i++) 6 dp[i]=dp[i-1]+dp[i-3]+1; 7 while(~scanf("%d",&n)) 8 { 9 printf("%d\n",dp[n]); 10 } 11 return 0; 12 } 13