视频格式基础知识:让你了解MKV、MP4、H.265、码率、色深等等...【炒鸡好】
Posted on 2017-04-24 12:02 bw_0927 阅读(2221) 评论(0) 编辑 收藏 举报http://www.4k123.com/thread-8194-1-1.html
1、封装格式(MP4/MKV…) vs 媒体格式(H.264/FLAC/AAC…)
MP4,MKV是你下载的视频文件最常见的种类。这些文件其实类似一个包裹,它的后缀则是包裹的包装方式。这些包裹里面,包含了视频(只有图像),音频(只有声音),字幕等。当播放器在播放的时候,首先对这个包裹进行拆包(专业术语叫做分离/splitting/demux,把其中的视频、音频等拿出来,再进行播放。
既然它们只是一个包裹,就意味着这个后缀不能保证里面的东西是啥,也不能保证到底有多少东西。包裹里面的每一件物品,我们称之为轨道(track),一般有这么些:
视频(Video): 一般来说肯定都有,但是也有例外,比如mka格式的外挂音轨,其实就是没视频的mkv。注意我们说到视频的时候,是不包括声音的。
音频(audio):一般来说也肯定有,但是有些情况是静音的,就没必要带了。
章节(Chapter): 蓝光原盘中自带的分段信息。如果文件带上了,那么你可以在播放器中看到带章节的效果:
.potplayer右键画面,选项-播放-在进度条上显示书签/章节标记
.mpc-hc 右键画面,选项-调节-在进度条显示章节标记
字幕(Subtitles):有些时候文件自带字幕,并且字幕并非是直接整合于视频的硬字幕,那么就是一起被打包在封装容器中。
其他可能还有附件等,不一一列举。每个类型也不一定只有一条轨道,比如经常见到带多音轨的MKV。
每个轨道,都有自己的格式。比如大家常说的,视频是H.264,音频是AAC,这些就是每个轨道的格式。
视频的格式,常见的有H.264(可以细分为8bit/10bit),H.265(当前也有8bit/10bit之分),RealVideo(常见于早期rm/rmvb),VC-1(微软主导的,常见于wmv)。基本上,H.264=AVC=AVC1, H.265=HEVC。
音频的格式,常见的有 FLAC/ALAC/TrueHD/DTS-HD MA这四种无损,和AAC/MP3/AC3/DTS(Core)这四种有损。
2、视频的基础参数:分辨率,帧率和码率。
视频是由连续的图像构成的。每一张图像,我们称为一帧(frame)。图像则是由像素(pixel)构成的。一张图像有多少像素,称为这个图像的分辨率。比如说1920×1080的图像,说明它是由横纵1920×1080个像素点构成。视频的分辨率就是每一帧图像的分辨率。
一个视频,每一秒由多少图像构成,称为这个视频的帧率(frame-rate)。
常见的帧率有24000/1001=23.976, 30000/1001=29.970, 60000/1001=59.940, 25.000, 50.000等等。这个数字是一秒钟内闪过的图像的数量。
比如23.976,就是1001秒内,有24000张图像。视频的帧率是可以是恒定的(cfr, Const Frame-Rate),也可以是变化的(vfr, Variable Frame-Rate)
码率的定义是视频文件体积除以时间。单位一般是Kbps(Kbit/s)或者Mbps(Mbit/s)。注意1B(Byte)=8b(bit)。所以一个24分钟,900MB的视频:
体积:900MB = 900MByte = 7200Mbit
时间:24min = 1440s
码率:7200/1440 = 5000 Kbps = 5Mbps
当视频文件的时间基本相同的时候(比如现在一集番大概是24分钟),码率和体积基本上是等价的,都是用来描述视频大小的参数。长度分辨率都相同的文件,体积不同,实际上就是码率不同。
码率也可以解读为单位时间内,用来记录视频的数据总量。码率越高的视频,意味着用来记录视频的数据量越多,潜在的解读就是视频可以拥有更好的质量。(注意,仅仅是潜在,后文我们会分析为什么高码率不一定等于高画质)
3、色深
色深(bit-depth),就是我们通常说的8bit和10bit,是指每个通道的精度。8bit就是每个通道用一个8bit整数(0~255)代表,10bit就是用10bit整数(0~1023)来显示。16bit则是0~65535
(注意,上文的表述是不严谨的,视频在编码的时候,并非一定能用到0~255的所有范围,而是可能有所保留,只用到一部分,比如16~235。这我们就不详细展开了)
你的显示器是8bit的,代表它能显示RGB每个通道0~255所有强度。但是视频的色深是YUV的色深,播放的时候,YUV需要通过计算转换到RGB。因此,10bit的高精度是间接的,它使得运算过程中精度增加,以让最后的颜色更细腻。
如何理解8bit显示器,播放10bit是有必要的呢:
一个圆的半径是12.33m, 求它的面积,保留两位小数。
半径的精度给定两位小数,结果也要求两位小数,那么圆周率精度需要给多高呢?也只要两位小数么?
取pi=3.14, 面积算出来是477.37平方米
取pi=3.1416,面积算出来是477.61平方米
取pi精度足够高,面积算出来是477.61平方米。所以取pi=3.1416是足够的,但是3.14就不够了。
换言之,即便最终输出的精度要求较低,也不意味着参与运算的数字,以及运算过程,可以保持较低的精度。在最终输出是8bit RGB的前提下,10bit YUV比起8bit YUV依旧具有精度优势的原因就在这里。事实上,8bit YUV转换后,覆盖的精度大概相当于8bit RGB的26%,而10bit转换后的精度大约可以覆盖97%——你想让你家8bit显示器发挥97%的细腻度么?看10bit吧。
8bit精度不足,主要表现在亮度较低的区域,容易形成色带:
注意这图右边那一圈圈跟波浪一样的效果。这就是颜色精度不足的表现。
10bit的优势不只在于显示精度的提高,在提高视频压缩率,减少失真方面,相对8bit也有优势。这方面就不展开了。
4、图像的表示方法:RGB模型 vs YUV模型
光的三原色是红(Red)、绿(Green)、蓝(Blue)。现代的显示器技术就是通过组合不同强度的三原色,来达成任何一种可见光的颜色。图像储存中,通过记录每个像素红绿蓝强度,来记录图像的方法,称为RGB模型 (RGB Model)
常见的图片格式中,PNG和BMP这两种就是基于RGB模型的。
比如说原图:
分别只显示R G B通道的强度,效果如下:
三个通道下,信息量和细节程度不一定是均匀分布的(不是一样的)。
比如说可以注意南小鸟脸上的红晕,在3个平面上的区分程度就不同——红色平面下几乎无从区分,造成区别的主要是绿色和蓝色的平面。外围白色的脸颊,三色都近乎饱和;但是红晕部分,只有红色饱和,绿色和蓝色不饱和。这是造成红色凸显的原因。
除了RGB模型,还有一种广泛采用的模型,称为YUV模型,又被称为亮度-色度模型(Luma-Chroma)。它是通过数学转换,将RGB三个通道,转换为一个代表亮度的通道(Y,又称为Luma),和两个代表色度的通道(UV,并成为Chroma)。
举个形象点的例子:一家养殖场饲养猪和牛,一种记数方式是:(猪的数量,牛的数量)
但是也可以这么记录:(总数量=猪的数量+牛的数量,相差=猪的数量-牛的数量)。两种方法之间有数学公式可以互转。
YUV模型干的是类似的事儿。通过对RGB数据的合理转换,得到另一种表示方式。YUV模型下,还有不同的实现方式。举个用的比较多的YCbCr模型:它把RGB转换成一个亮度(Y),和 蓝色色度(Cb) 以及 红色色度(Cr)。转换背后复杂的公式大家不需要了解,只需要看看效果:
只有亮度通道:
只有蓝色色度:
只有红色色度:
在图像视频的加工与储存中,YUV格式一般更受欢迎,理由如下:
1、人眼对亮度的敏感度远高于色度,因此人眼看到的有效信息主要来自于亮度。YUV模型可以将绝大多数的有效信息分配到Y通道。UV通道相对记录的信息少的多。相对于RGB模型较为平均的分配,YUV模型将多数有效信息集中在Y通道,不但减少了冗余信息量,还为压缩提供了便利
2、保持了对黑白显示设备的向下兼容
3、图像编辑中,调节亮度和颜色饱和度,在YUV模型下更方便。
几乎所有的视频格式,以及广泛使用的JPEG图像格式,都是基于YCbCr模型的。播放的时候,播放器需要将YCbCr的信息,通过计算,转换为RGB。这个步骤称为渲染(Rendering)每个通道的记录,通常是用整数来表示。
比如RGB24,就是RGB各8个bit,用0~255 (8bit的二进制数范围)来表示某个颜色的强弱。YUV模型也不例外,也是用整数来表示每个通道的高低。
5、色度半采样
在YUV模型的应用中,Y和UV的重要性是不等同的。图像视频的实际储存和传输中,通常将Y以全分辨率记录,UV以减半甚至1/4的分辨率记录。这个手段被称为色度半采样(Chroma Sub-Sampling)。色度半采样可以有效减少传输带宽,和加大UV平面的压缩率,但是不可避免的会损失UV平面的有效信息。
我们平常的视频,最常见的是420采样。配合YUV格式,常常被写作yuv420。这种采样是Y保留全部,UV只以(1/2) x (1/2)的分辨率记录。比如说1920×1080的视频,其实只有亮度平面是1920×1080。两个色度平面都只有960×540的分辨率。
当然了,你也可以选择不做缩减。这种称为444采样,或者yuv444。YUV三个平面全是满分辨率。
- 在做YUV->RGB的时候,首先需要将缩水的UV分辨率拉升到Y的分辨率(madVR中允许自定义算法,在Chroma Upscaling当中),然后再转换到RGB。
- 做RGB->YUV的转换,也是先转换到444(YUV的分辨率相同),再将UV分辨率降低。
一般能拿到的片源,包括所有蓝光原盘,都是420采样的。所以成品一般也保留420采样。所以yuv420就表示这个视频是420采样的yuv格式。
将420做成444格式,需要自己手动将UV分辨率拉升2×2倍。在今天madVR等渲染器可以很好地拉升UV平面的情况下,这种做法无异于毫无必要的拉升DVD做成伪高清。
当然了,有时候也需要在444/RGB平面下做处理和修复,常见的比如视频本身RGB平面不重叠(比如摩卡少女樱),这种修复过程首先要将UV分辨率拉升,然后转RGB,做完修复再转回YUV。修复后的结果相当于全新构图,这种情况下保留444格式就是有理由,有必要的。
H264格式编码444格式,需要High 4:4:4 Predictive Profile(简称Hi444pp)。所以看到Hi444pp/yuv444 之类的标示,你就需要去找压制者的陈述,为什么他要做这么个拉升。如果找不到有效的理由,你应该默认作者是在瞎做。
6、空间上的低频与高频:平面,纹理和线条
在视频处理中,空间(spatial)的概念指的是一帧图片以内(你可以认为就是一张图所呈现的二维空间/平面)。跟时间(temporal)相对;时间的概念就强调帧与帧之间的变换。
于是我们重新来看这张亮度的图:
亮度变化较快,变动幅度大的区域,我们称之为高频区域。否则,亮度变化缓慢且不明显的区域,我们称为低频区域。
图中的蓝圈就是一块典型的低频区域,或者就叫做平面(平坦的部分)。亮度几乎没有变化
绿圈中,亮度呈现跳跃式的突变,这种高频区域我们称之为线条。
红圈中,亮度频繁变化,幅度有高有低,这种高频区域我们称为纹理。
有时候,线条和纹理(高频区域)统称为线条,平面(低频区域)又叫做非线条。
这是亮度平面。色度平面,高频低频,线条等概念也同样适用,就是描述色度变化的快慢轻重。一般我们所谓的“细节”,就是指图像中的高频信息。
一般来说,一张图的高频信息越多,意味着这张图信息量越大,所需要记录的数据量就越多,编码所需要的运算量也越大。如果一个视频包含的空间性高频信息很多(通俗点说就是每一帧内细节很多),意味着这个视频的空间复杂度很高。
记录一张图片,编码器需要决定给怎样的部分多少码率。码率在一张图内不同部分的分配,叫做码率的空间分配。分配较好的时候,往往整幅图目视观感比较统一;分配不好常见的后果,就是线条纹理尚可,背景平面区域出现大量色带色块(码率被过分的分配给线条);或者背景颜色过渡自然,纹理模糊,线条烂掉(码率被过分的分配给非线条)。
7、时间上的低频与高频:动态
在视频处理中,时间(temporal)的概念强调帧与帧之间的变换。跟空间(spatial)相对。
动态的概念无需多解释;就是帧与帧之间图像变化的强弱,变化频率的高低。一段视频如果动态很高,变化剧烈,我们称为时间复杂度较高,时域上的高频信息多。否则如果视频本身舒缓多静态,我们称为时间复杂度低,时域上的低频信息多。
一般来说,一段视频的时域高频信息多,动态的信息量就大,所需要记录的数据量就越多,编码所需要的运算量也越大。但是另一方面,人眼对高速变化的场景,敏感度不如静态的图片来的高(你没有时间去仔细观察细节),所以动态场景的优先度可以低于静态场景。如何权衡以上两点去分配码率,被称为码率的时间分配。分配较好的时候,看视频无论动态还是静态效果都较好;分配不好的时候往往是静态部分看着还行,动态部分糊烂掉;或者动态部分效果过分的好,浪费了大量码率,造成静态部分欠码,瑕疵明显。
很多人喜欢看静止的截图对比,来判断视频的画质。从观看的角度,这种做法其实并不完全科学——如果你觉得比较烂的一帧其实是取自高动态场景,那么这一帧稍微烂点无可厚非,反正观看的时候你注意不到,将码率省下来给静态部分会更好。
8、清晰度与画质简述
我们经常讨论,一个视频清晰度如何,画质好不好。但是如何给这两个术语做定义呢?
经常看到的说法:“这个视频清晰度是1080p的”。其实看过上文你就应该知道,1080p只是视频的分辨率,它不能直接代表清晰度——比如说,我可以把一个480p的dvd视频拉升到1080p,那又怎样呢?它的清晰度难道就提高了么?
一个比较接近清晰度的概念,是上文所讲述的,空间高频信息量,就是一帧内的细节。一张图,一个视频的细节多,它的清晰度就高。分辨率决定了高频信息量的上限;就是它最清晰能到什么地步。1080p之所以比480p好,是因为它可以允许图像记录的高频信息多。这个说法看样子很靠谱,但是,有反例:
右图的高频信息远比左图多——它的线条很锐利,有大量致密的噪点(注意噪点完全符合高频信息的定义;它使得图像变化的非常快)
但是你真的觉得右图清晰度高么?
事实上,右图完全是通过左图加工而来。通过过度锐化+强噪点,人为的增加无效的高频信息。
所以清晰度的定义我更倾向于这样一个说法:图像或视频中,原生、有效的高频信息。
原生,强调这种清晰度是非人工添加的;有效;强调细节本身有意义,而不是毫无意义的噪点特效。
值得一提的是,人为增加的高频信息不见得完全没有帮助。有的时候适度锐化的确能够起到不错的目视效果:
这是一幅适度锐化后的效果。如果有人觉得右图更好,至少某些部分更好,相信我,你不是一个人。所以适度锐化依旧是视频和图像处理中,可以接受的一种主观调整的手段,一定的场合下,它确实有助于提高目视效果。
以上是清晰度的概述。注意,清晰度只是空间方面(就是一帧以内)。如果再考虑到动态效果的优秀与否(视频是不是那种一动起来就糊成一团的,或者动起来感觉卡顿明显的,常见于早起RMVB),空间和时间上优秀的观看效果共同定义了画质。所以我们说madVR/svp那些倍帧效果有助于提高画质,实际上它们增强了时间上的观看效果。
好的画质,是制作者和观众共同追求的。怎么样的视频会有好的画质呢?是不是码率越高的视频画质越好呢?真不见得。视频的画质,是由以下几点共同决定的:
1、源的画质。
俗话说的好,上梁不正下梁歪。如果源的画质本身很差,那么再如何折腾都别指望画质好到哪去。所以压制者往往会选择更好的源进行压制——举个栗子,BDRip一般都比TVRip来的好,哪怕是720p。蓝光也分销售地区,一般日本销售的日版,画质上比美版、台版、港版啥的都来得好,所以同样是BDRip,选取更好的源,就能做到画质上优先一步。
2、播放条件。
观众是否用了足矣支持高画质播放的硬件和软件。这就是为啥我们在发布Rip的同时大力普及好的播放器;有时候一个好的播放器胜过多少在制作方面的精力投入。
3、码率投入vs编码复杂度。
视频的时间和空间复杂度,并称为编码复杂度。编码复杂度高的视频,往往细节多,动态高(比如《魔法少女小圆剧场版 叛逆的物语》),这样的视频天生需要较高的码率去维持一个优秀的观看效果。
相反,有些视频编码复杂度低(比如《请问今天要来点兔子么》,动态少,线条细节柔和),这种视频就是比较节省码率的。
4、码率分配的效率和合理度。
同样多的码率,能起到怎样好的效果,被称为效率。比如H264就比之前的RealVideo效率高;10bit比8bit效率高;编码器先进,参数设置的比较合理,编码器各种高端参数全开(通常以编码时间作为代价),码率效率就高。
合理度就是码率在时空分配方面合理与否,合理的分配,给观众的观看效果就比较统一协调。 码率分配的效率和合理度,是对制作者的要求,要求制作者对片源分析,参数设置有比较到位的理解。
这里再多提一句,至少在这个时间点,也就是此文发布的2014年年底,HEVC相对于AVC可以提高50%的效率,依旧是一个纸面上的理论值。实际操作中,因为HEVC编码器的成熟度远不及经过了十几年发展的AVC编码器,导致现在HEVC的潜力远没有能发挥出来,特别是高画质下甚至不如。
对于目前主流的,定位收藏画质的BDRip,同样码率下x265的画质相对于x264没有优势;所以在近期,大家不用优先的去下载HEVC版作为收藏目的,更不必迷信什么“码率降低一半”。再强调一次,这个时间点;如果一年后以上陈述被不断进步的HEVC编码器推翻,我毫不惊讶。就比如目前4K就开始使用改编码方式了。