1.DDPG是一个离线的策略方法

rl_utils.train_off_policy_agent(env, agent, num_episodes,
                                              replay_buffer, minimal_size, batch_size)

2.DDPG是一个将状态states和actor的输出作为共同的输入来预测critic的Q值

next_q_values = self.target_critic(
     torch.cat(
         [next_states, self.target_actor(next_states)], dim=1))
q_targets = rewards + self.gamma * next_q_values * (1 - dones)
# critic_loss 将状态和状态对应的动作进行构造损失
critic_loss = torch.mean(
F.mse_loss(
self.critic(torch.cat([states, actions], dim=1)),
q_targets))

3.动作的损失是使得Q值最大

actor_loss = -torch.mean(
            self.critic(
                # 策略网络就是为了使得Q值最大值
                torch.cat([states, self.actor(states)], dim=1))) # 为了使得Q值最大

4.软更新策略目标网络 self.tau的数值是0.005 

 for param_target, param in zip(target_net.parameters(),
                                       net.parameters()):
            param_target.data.copy_(param_target.data*(1.0 - self.tau) +
                                    param.data * self.tau)

train.py

import random
import gym
import numpy as np
from tqdm import tqdm
import torch
from torch import nn
import rl_utils
from model import DDPG
import matplotlib.pyplot as plt



actor_lr = 5e-4
critic_lr = 5e-3
num_episodes = 200
hidden_dim = 64
gamma = 0.98
tau = 0.005 # 软更新参数
buffer_size = 10000
minimal_size = 1000
batch_size = 64
sigma = 0.01 # 高斯噪声标准差
device = torch.device("cuda") if torch.cuda.is_available() else torch.device(
    "cpu")

env_name = "Pendulum-v0"
env = gym.make(env_name)
random.seed(0)
np.random.seed(0)
env.seed(0)
torch.manual_seed(0)
replay_buffer = rl_utils.ReplayBuffer(buffer_size)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
action_bound = env.action_space.high[0]  # 动作最大值
agent = DDPG(state_dim, action_dim, state_dim + action_dim, hidden_dim, False,
             action_bound, sigma, actor_lr, critic_lr, tau, gamma, device)

return_list = rl_utils.train_off_policy_agent(env, agent, num_episodes,
                                              replay_buffer, minimal_size, batch_size)


episodes_list = list(range(len(return_list)))
plt.plot(episodes_list, return_list)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('DDPG on {}'.format(env_name))
plt.show()

mv_return = rl_utils.moving_average(return_list, 9)
plt.plot(episodes_list, mv_return)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('DDPG on {}'.format(env_name))
plt.show()

model.py

import torch
import torch.nn.functional as F
from torch import nn
import random
import numpy as np


class PolicyNet(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim, action_dim, action_bound):
        super(PolicyNet, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc2 = torch.nn.Linear(hidden_dim, action_dim)
        self.action_bound = action_bound  # action_bound 是环境可以接受的最大动作值

    def forward(self, x):
        x = F.relu(self.fc1(x))
        return torch.tanh(self.fc2(x)) * self.action_bound # tanh可以用来使得数值为-1, 1, self.action_bound可以将其变为对应的离散范围

class QValueNet(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim, action_dim):
        super(QValueNet, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim + action_dim, hidden_dim)
        self.fc2 = torch.nn.Linear(hidden_dim, 1)

    def forward(self, x, a):
        cat = torch.cat([x, a], dim=1) # 拼接状态和动作
        x = F.relu(self.fc1(cat))
        return self.fc2(x)

class TwoLayerFC(torch.nn.Module):
    # 这是一个简单的两层神经网络
    def __init__(self,
                 num_in,
                 num_out,
                 hidden_dim,
                 activation=F.relu,
                 out_fn=lambda x: x):
        super().__init__()
        self.fc1 = nn.Linear(num_in, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, hidden_dim)
        self.fc3 = nn.Linear(hidden_dim, num_out)

        self.activation = activation
        self.out_fn = out_fn

    def forward(self, x):
        x = self.activation(self.fc1(x))
        x = self.activation(self.fc2(x))
        x = self.out_fn(self.fc3(x))
        return x



class DDPG:
    """DDPG 算法"""
    def __init__(self, num_in_actor, num_out_actor, num_in_critic, hidden_dim,
                 discrete, action_bound, sigma, actor_lr, critic_lr, tau,
                 gamma, device):
        out_fn = (lambda x: x) if discrete else (  # 如果是分离的或者连续的
            lambda x : torch.tanh(x) * action_bound)

        self.actor = TwoLayerFC(num_in_actor,
                                num_out_actor,
                                hidden_dim,
                                activation=F.relu,
                                out_fn=out_fn).to(device)
        self.target_actor = TwoLayerFC(num_in_actor,
                                num_out_actor,
                                hidden_dim,
                                activation=F.relu,
                                out_fn=out_fn).to(device)

        self.critic = TwoLayerFC(num_in_critic, 1, hidden_dim).to(device)
        self.target_critic = TwoLayerFC(num_in_critic, 1, hidden_dim).to(device)
        # 初始化目标价值网络并设置和价值网络相同的参数
        self.target_critic.load_state_dict(self.critic.state_dict())
        self.target_actor.load_state_dict(self.actor.state_dict())
        self.actor_optimizer = torch.optim.Adam(self.actor.parameters(),
                                                lr=actor_lr)
        self.critic_optimizer = torch.optim.Adam(self.critic.parameters(),
                                                 lr=critic_lr)
        self.gamma = gamma
        self.sigma = sigma # 高斯噪声的标准差, 均值为0
        self.action_bound = action_bound # action_bound 是环境可以接受的动作的最大值
        self.tau = tau  # 目标网络软更新参数
        self.action_dim = num_out_actor
        self.device = device

    def take_action(self, state):
        state = torch.tensor([state], dtype=torch.float).to(self.device)
        action = self.actor(state).item()
        # 给动作添加噪声, 增加探索
        action = action + self.sigma * np.random.randn(self.action_dim)
        return action

    def soft_update(self, net, target_net):
        for param_target, param in zip(target_net.parameters(),
                                       net.parameters()):
            param_target.data.copy_(param_target.data*(1.0 - self.tau) +
                                    param.data * self.tau)

    def update(self, transition_dict):
        states = torch.tensor(transition_dict['states'],
                              dtype=torch.float).to(self.device)
        actions = torch.tensor(transition_dict['actions'],
                               dtype=torch.float).view(-1, 1).to(self.device)
        rewards = torch.tensor(transition_dict['rewards'],
                               dtype=torch.float).view(-1, 1).to(self.device)
        next_states = torch.tensor(transition_dict['next_states'],
                                   dtype=torch.float).to(self.device)
        dones = torch.tensor(transition_dict['dones'],
                             dtype=torch.float).view(-1, 1).to(self.device)
        # 将状态和动作的输出组合完输入
        next_q_values = self.target_critic(
            torch.cat(
                [next_states, self.target_actor(next_states)], dim=1))

        q_targets = rewards + self.gamma * next_q_values * (1 - dones)

        # critic_loss 将状态和状态对应的动作进行构造损失
        critic_loss = torch.mean(
            F.mse_loss(
                self.critic(torch.cat([states, actions], dim=1)),
            q_targets))
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        self.critic_optimizer.step()

        actor_loss = -torch.mean(
            self.critic(
                # 策略网络就是为了使得Q值最大值
                torch.cat([states, self.actor(states)], dim=1))) # 为了使得Q值最大
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        self.actor_optimizer.step()

        self.soft_update(self.actor, self.target_actor)  # 软更新策略网络
        self.soft_update(self.critic, self.target_critic) # 软更新价值网络

rl_utils.py

from tqdm import tqdm
import numpy as np
import torch
import collections
import random


class ReplayBuffer:
    def __init__(self, capacity):
        self.buffer = collections.deque(maxlen=capacity)

    def add(self, state, action, reward, next_state, done):
        self.buffer.append((state, action, reward, next_state, done))

    def sample(self, batch_size):
        transitions = random.sample(self.buffer, batch_size)
        state, action, reward, next_state, done = zip(*transitions)
        return np.array(state), action, reward, np.array(next_state), done

    def size(self):
        return len(self.buffer)


def moving_average(a, window_size):
    cumulative_sum = np.cumsum(np.insert(a, 0, 0))
    middle = (cumulative_sum[window_size:] - cumulative_sum[:-window_size]) / window_size
    r = np.arange(1, window_size - 1, 2)
    begin = np.cumsum(a[:window_size - 1])[::2] / r
    end = (np.cumsum(a[:-window_size:-1])[::2] / r)[::-1]
    return np.concatenate((begin, middle, end))


def train_on_policy_agent(env, agent, num_episodes):
    return_list = []
    for i in range(10):
        with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar:
            for i_episode in range(int(num_episodes / 10)):
                episode_return = 0
                transition_dict = {'states': [], 'actions': [], 'next_states': [], 'rewards': [], 'dones': []}
                state = env.reset()
                done = False
                # 一局放入到一块数据里面
                while not done:
                    action = agent.take_action(state)
                    next_state, reward, done, _ = env.step(action)
                    transition_dict['states'].append(state)
                    transition_dict['actions'].append(action)
                    transition_dict['next_states'].append(next_state)
                    transition_dict['rewards'].append(reward)
                    transition_dict['dones'].append(done)
                    state = next_state
                    episode_return += reward
                return_list.append(episode_return)
                agent.update(transition_dict)
                if (i_episode + 1) % 10 == 0:
                    pbar.set_postfix({'episode': '%d' % (num_episodes / 10 * i + i_episode + 1),
                                      'return': '%.3f' % np.mean(return_list[-10:])})
                pbar.update(1)
    return return_list


def train_off_policy_agent(env, agent, num_episodes, replay_buffer, minimal_size, batch_size):
    return_list = []
    for i in range(10):
        with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar:
            for i_episode in range(int(num_episodes / 10)):
                episode_return = 0
                state = env.reset()
                done = False
                while not done:
                    action = agent.take_action(state)
                    next_state, reward, done, _ = env.step(action)
                    replay_buffer.add(state, action, reward, next_state, done)
                    state = next_state
                    episode_return += reward
                    if replay_buffer.size() > minimal_size:
                        b_s, b_a, b_r, b_ns, b_d = replay_buffer.sample(batch_size)
                        transition_dict = {'states': b_s, 'actions': b_a, 'next_states': b_ns, 'rewards': b_r,
                                           'dones': b_d}
                        agent.update(transition_dict)
                return_list.append(episode_return)
                if (i_episode + 1) % 10 == 0:
                    pbar.set_postfix({'episode': '%d' % (num_episodes / 10 * i + i_episode + 1),
                                      'return': '%.3f' % np.mean(return_list[-10:])})
                pbar.update(1)
    return return_list


def compute_advantage(gamma, lmbda, td_delta):
    td_delta = td_delta.detach().numpy()
    advantage_list = []
    advantage = 0.0
    for delta in td_delta[::-1]:
        advantage = gamma * lmbda * advantage + delta  # 时分差分算法, 表示从头到尾的影响
        advantage_list.append(advantage)
    advantage_list.reverse() # 序列反转
    return torch.tensor(advantage_list, dtype=torch.float)
    

 

 

 

posted on 2022-09-12 16:02  python我的最爱  阅读(772)  评论(0编辑  收藏  举报